Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1399-2016
https://doi.org/10.5194/amt-9-1399-2016
Research article
 | 
01 Apr 2016
Research article |  | 01 Apr 2016

Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique

Songhua Wu, Guangyao Dai, Xiaoquan Song, Bingyi Liu, and Liping Liu

Related authors

Validation of initial observation from the first space-borne high spectral resolution lidar with ground-based lidar network
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-235,https://doi.org/10.5194/amt-2023-235, 2023
Preprint under review for AMT
Short summary
Aerosols and Clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1
Guangyao Dai, Songhua Wu, Wenrui Long, Jiqiao Liu, Yuan Xie, Kangwen Sun, Fanqian Meng, Xiaoquan Song, Zhongwei Huang, and Weibiao Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2182,https://doi.org/10.5194/egusphere-2023-2182, 2023
Short summary
Correlation between marine aerosol optical properties and wind fields over remote oceans with use of spaceborne lidar observations
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-433,https://doi.org/10.5194/egusphere-2023-433, 2023
Short summary
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022,https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022,https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023,https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
MIPAS ozone retrieval version 8: middle-atmosphere measurements
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023,https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Atmospheric N2O and CH4 total columns retrieved from low-resolution Fourier transform infrared (FTIR) spectra (Bruker VERTEX 70) in the mid-infrared region
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, and Martine De Mazière
Atmos. Meas. Tech., 16, 5593–5608, https://doi.org/10.5194/amt-16-5593-2023,https://doi.org/10.5194/amt-16-5593-2023, 2023
Short summary
A new accurate retrieval algorithm of bromine monoxide columns inside minor volcanic plumes from Sentinel-5P TROPOMI observations
Simon Warnach, Holger Sihler, Christian Borger, Nicole Bobrowski, Steffen Beirle, Ulrich Platt, and Thomas Wagner
Atmos. Meas. Tech., 16, 5537–5573, https://doi.org/10.5194/amt-16-5537-2023,https://doi.org/10.5194/amt-16-5537-2023, 2023
Short summary
Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023,https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary

Cited articles

Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992.
Behrendt, A., Wulfmeyer, V., Bauer, H.-S., Schaberl, T., Di Girolamo, P., Summa, D., Kiemle, C., Ehret, G., Whiteman, D. N., and Demoz, B. B.: Intercomparison of water vapor data measured with lidar during IHOP_2002 – Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes, J. Atmos. Oceanic Tech., 24, 3–21, 2007a.
Behrendt, A., Wulfmeyer, V., Schaberl, T., Bauer, H.-S., Kiemle, C., Ehret, G., Flamant, C., Kooi, S., Ismail, S., and Ferrare, R.: Intercomparison of water vapor data measured with lidar during IHOP_2002 – Part II: Airborne-to-airborne systems, J. Atmos. Oceanic Tech., 24, 22–39, 2007b.
Bhawar, R., Di Girolamo, P., Summa, D., Flamant, C., Althausen, D., Behrendt, A., Kiemle, C., Bosser, P., Cacciani, M., and Champollion, C.: The water vapour intercomparison effort in the framework of the Convective and Orographically – Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems, Q. J. Roy. Meteor. Soc., 137, 325–348, 2011.
Browell, E. V.: Remote sensing of tropospheric gases and aerosols with an airborne DIAL system, in: Optical and Laser Remote Sensing, Springer, Berlin Heidelberg, 138–147, 1983.
Download
Short summary
The water vapor expedition experiment was operated in the Tibetan Plateau during July and August 2014, by using water vapor, cloud, and aerosol lidar. During the observations, water vapor mixing ratio at high elevation was obtained. The validation of water vapor mixing ratio was completed by comparing the lidar measurements to radiosonde data. Finally, with the vertical wind speed, the vertical flux of water vapor is calculated and the upwelling and deposition of the water vapor are monitored.