Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 9, issue 3
Atmos. Meas. Tech., 9, 1399–1413, 2016
https://doi.org/10.5194/amt-9-1399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 1399–1413, 2016
https://doi.org/10.5194/amt-9-1399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Apr 2016

Research article | 01 Apr 2016

Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique

Songhua Wu et al.

Related authors

Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data
Guangyao Dai, Dietrich Althausen, Julian Hofer, Ronny Engelmann, Patric Seifert, Johannes Bühl, Rodanthi-Elisavet Mamouri, Songhua Wu, and Albert Ansmann
Atmos. Meas. Tech., 11, 2735–2748, https://doi.org/10.5194/amt-11-2735-2018,https://doi.org/10.5194/amt-11-2735-2018, 2018
Short summary
Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014
Xiaochun Zhai, Songhua Wu, Bingyi Liu, Xiaoquan Song, and Jiaping Yin
Atmos. Meas. Tech., 11, 1313–1331, https://doi.org/10.5194/amt-11-1313-2018,https://doi.org/10.5194/amt-11-1313-2018, 2018
Short summary
Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by Lidar and Radiosonde Sounding at the Summertime in 2014
Guangyao Dai, Songhua Wu, Xiaoquan Song, and Liping Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-355,https://doi.org/10.5194/amt-2017-355, 2017
Preprint retracted
Short summary
Characterization of a wind turbine wake evolving over an intertidal zone performed with dual-lidar observations
Changzhong Feng, Bingyi Liu, Songhua Wu, Jintao Liu, Rongzhong Li, and Xitao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-23,https://doi.org/10.5194/amt-2017-23, 2017
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Instrumental characteristics and potential greenhouse gas measurement capabilities of the Compact High-Spectral-Resolution Infrared Spectrometer: CHRIS
Marie-Thérèse El Kattar, Frédérique Auriol, and Hervé Herbin
Atmos. Meas. Tech., 13, 3769–3786, https://doi.org/10.5194/amt-13-3769-2020,https://doi.org/10.5194/amt-13-3769-2020, 2020
Short summary
Can statistics of turbulent tracer dispersion be inferred from camera observations of SO2 in the ultraviolet? A modelling study
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020,https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
A comparison of OH nightglow volume emission rates as measured by SCIAMACHY and SABER
Yajun Zhu, Martin Kaufmann, Qiuyu Chen, Jiyao Xu, Qiucheng Gong, Jilin Liu, Daikang Wei, and Martin Riese
Atmos. Meas. Tech., 13, 3033–3042, https://doi.org/10.5194/amt-13-3033-2020,https://doi.org/10.5194/amt-13-3033-2020, 2020
Short summary
Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes
Arne Babenhauserheide, Frank Hase, and Isamu Morino
Atmos. Meas. Tech., 13, 2697–2710, https://doi.org/10.5194/amt-13-2697-2020,https://doi.org/10.5194/amt-13-2697-2020, 2020
Short summary
Development of on-site self-calibration and retrieval methods for sky-radiometer observations of precipitable water vapor
Masahiro Momoi, Rei Kudo, Kazuma Aoki, Tatsuhiro Mori, Kazuhiko Miura, Hiroshi Okamoto, Hitoshi Irie, Yoshinori Shoji, Akihiro Uchiyama, Osamu Ijima, Matsumi Takano, and Teruyuki Nakajima
Atmos. Meas. Tech., 13, 2635–2658, https://doi.org/10.5194/amt-13-2635-2020,https://doi.org/10.5194/amt-13-2635-2020, 2020
Short summary

Cited articles

Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992.
Behrendt, A., Wulfmeyer, V., Bauer, H.-S., Schaberl, T., Di Girolamo, P., Summa, D., Kiemle, C., Ehret, G., Whiteman, D. N., and Demoz, B. B.: Intercomparison of water vapor data measured with lidar during IHOP_2002 – Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes, J. Atmos. Oceanic Tech., 24, 3–21, 2007a.
Behrendt, A., Wulfmeyer, V., Schaberl, T., Bauer, H.-S., Kiemle, C., Ehret, G., Flamant, C., Kooi, S., Ismail, S., and Ferrare, R.: Intercomparison of water vapor data measured with lidar during IHOP_2002 – Part II: Airborne-to-airborne systems, J. Atmos. Oceanic Tech., 24, 22–39, 2007b.
Bhawar, R., Di Girolamo, P., Summa, D., Flamant, C., Althausen, D., Behrendt, A., Kiemle, C., Bosser, P., Cacciani, M., and Champollion, C.: The water vapour intercomparison effort in the framework of the Convective and Orographically – Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems, Q. J. Roy. Meteor. Soc., 137, 325–348, 2011.
Browell, E. V.: Remote sensing of tropospheric gases and aerosols with an airborne DIAL system, in: Optical and Laser Remote Sensing, Springer, Berlin Heidelberg, 138–147, 1983.
Publications Copernicus
Download
Short summary
The water vapor expedition experiment was operated in the Tibetan Plateau during July and August 2014, by using water vapor, cloud, and aerosol lidar. During the observations, water vapor mixing ratio at high elevation was obtained. The validation of water vapor mixing ratio was completed by comparing the lidar measurements to radiosonde data. Finally, with the vertical wind speed, the vertical flux of water vapor is calculated and the upwelling and deposition of the water vapor are monitored.
The water vapor expedition experiment was operated in the Tibetan Plateau during July and August...
Citation