Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 9, issue 2
Atmos. Meas. Tech., 9, 441–454, 2016
https://doi.org/10.5194/amt-9-441-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 441–454, 2016
https://doi.org/10.5194/amt-9-441-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Feb 2016

Research article | 11 Feb 2016

Predicting ambient aerosol thermal–optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

Matteo Reggente et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Organic carbon and elemental carbon are major components of atmospheric PM. Typically they are measured using destructive and relatively expensive methods (e.g., TOR). We aim to reduce the operating costs of large air quality monitoring networks using FT-IR spectra of ambient PTFE filters and PLS regression. We achieve accurate predictions for models (calibrated in 2011) that use samples collected at the same or different sites of the calibration data set and in a different year (2013).
Organic carbon and elemental carbon are major components of atmospheric PM. Typically they are...
Citation