Articles | Volume 9, issue 2
https://doi.org/10.5194/amt-9-441-2016
https://doi.org/10.5194/amt-9-441-2016
Research article
 | 
11 Feb 2016
Research article |  | 11 Feb 2016

Predicting ambient aerosol thermal–optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

Matteo Reggente, Ann M. Dillner, and Satoshi Takahama

Related authors

Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations
Charlotte Bürki, Matteo Reggente, Ann M. Dillner, Jenny L. Hand, Stephanie L. Shaw, and Satoshi Takahama
Atmos. Meas. Tech., 13, 1517–1538, https://doi.org/10.5194/amt-13-1517-2020,https://doi.org/10.5194/amt-13-1517-2020, 2020
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019,https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples
Matteo Reggente, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 12, 2287–2312, https://doi.org/10.5194/amt-12-2287-2019,https://doi.org/10.5194/amt-12-2287-2019, 2019
Short summary
An open platform for Aerosol InfraRed Spectroscopy analysis – AIRSpec
Matteo Reggente, Rudolf Höhn, and Satoshi Takahama
Atmos. Meas. Tech., 12, 2313–2329, https://doi.org/10.5194/amt-12-2313-2019,https://doi.org/10.5194/amt-12-2313-2019, 2019
Short summary
Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks
Satoshi Takahama, Ann M. Dillner, Andrew T. Weakley, Matteo Reggente, Charlotte Bürki, Mária Lbadaoui-Darvas, Bruno Debus, Adele Kuzmiakova, and Anthony S. Wexler
Atmos. Meas. Tech., 12, 525–567, https://doi.org/10.5194/amt-12-525-2019,https://doi.org/10.5194/amt-12-525-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024,https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
A new software toolkit for optical apportionment of carbonaceous aerosol
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, Virginia Vernocchi, and Dario Massabò
Atmos. Meas. Tech., 17, 1363–1373, https://doi.org/10.5194/amt-17-1363-2024,https://doi.org/10.5194/amt-17-1363-2024, 2024
Short summary
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023,https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023,https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary

Cited articles

Anderson, J., Thundiyil, J., and Stolbach, A.: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health, Journal of Medical Toxicology, 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012.
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Statist. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2010.
Barker, M. and Rayens, W.: Partial least squares for discrimination, J. Chemometr., 17, 166–173, 2003.
Birch, M. E. and Cary, R. A.: Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues, Analyst, 121, 1183–1190, 1996.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Download
Short summary
Organic carbon and elemental carbon are major components of atmospheric PM. Typically they are measured using destructive and relatively expensive methods (e.g., TOR). We aim to reduce the operating costs of large air quality monitoring networks using FT-IR spectra of ambient PTFE filters and PLS regression. We achieve accurate predictions for models (calibrated in 2011) that use samples collected at the same or different sites of the calibration data set and in a different year (2013).