Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-1019-2018
https://doi.org/10.5194/amt-11-1019-2018
Research article
 | 
22 Feb 2018
Research article |  | 22 Feb 2018

Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015

David R. Thompson, Brian H. Kahn, Robert O. Green, Steve A. Chien, Elizabeth M. Middleton, and Daniel Q. Tran

Related authors

Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681,https://doi.org/10.5194/egusphere-2024-1681, 2024
Short summary
The pitfalls of ignoring topography in snow retrievals: a case study with EMIT
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
EGUsphere, https://doi.org/10.2139/ssrn.4671920,https://doi.org/10.2139/ssrn.4671920, 2024
Short summary
Modeling dust mineralogical composition: sensitivity to soil mineralogy atlases and their expected climate impacts
María Gonçalves Ageitos, Vincenzo Obiso, Ron L. Miller, Oriol Jorba, Martina Klose, Matt Dawson, Yves Balkanski, Jan Perlwitz, Sara Basart, Enza Di Tomaso, Jerónimo Escribano, Francesca Macchia, Gilbert Montané, Natalie M. Mahowald, Robert O. Green, David R. Thompson, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023,https://doi.org/10.5194/acp-23-8623-2023, 2023
Short summary
New sampling strategy mitigates a solar-geometry-induced bias in sub-kilometre vapour scaling statistics derived from imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022,https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary

Cited articles

Barker, H. W., Qu, Z., Bélair, S., Leroyer, S., Milbrandt, J. A., and Vaillancourt, P. A.: Scaling properties of observed and simulated satellite visible radiances, J. Geophys. Res.-Atmos., 122, 9413–9429, 2017. a
Bender, F. A., Ramanathan, V., and Tselioudis, G.: Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift, Clim. Dynam., 38, 2037–2053, 2012. a
Boardman, J. W. and Kruse, F. A.: Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach, IEEE T. Geosci. Remote, 49, 4138–4152, 2011. a
Brown, L. D. and Levine, M.: Variance estimation in nonparametric regression via the difference sequence method, Ann. Stat., 35, 2219–2232, 2007. a
Ceppi, P. and Hartmann, D. L.: Connections between clouds, radiation, and midlatitude dynamics: A review, Current Climate Change Reports, 1, 94–102, 2015. a
Download
Short summary
The distribution of ice and liquid particles in clouds (i.e., their thermodynamic phase) has a large impact on Earth's climate. We report a global high spatial resolution survey of cloud phase based on a decade of data from the Hyperion orbital imaging spectrometer. Seasonal and latitudinal trends corroborate observations by the Atmospheric Infrared Sounder (AIRS). Most variance observed at climate model grid scales of 100 km is explained by spatial structure at finer spatial resolutions.