Articles | Volume 11, issue 1
Atmos. Meas. Tech., 11, 111–125, 2018
https://doi.org/10.5194/amt-11-111-2018

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 11, 111–125, 2018
https://doi.org/10.5194/amt-11-111-2018

Research article 10 Jan 2018

Research article | 10 Jan 2018

Wave-optics uncertainty propagation and regression-based bias model in GNSS radio occultation bending angle retrievals

Michael E. Gorbunov and Gottfried Kirchengast

Related authors

Generalized canonical transform method for radio occultation sounding with improved retrieval in the presence of horizontal gradients
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021,https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
The influence of the signal-to-noise ratio upon radio occultation inversion quality
Michael Gorbunov
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-114,https://doi.org/10.5194/amt-2020-114, 2020
Revised manuscript not accepted
Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space
Michael E. Gorbunov, Estel Cardellach, and Kent B. Lauritsen
Atmos. Meas. Tech., 11, 1181–1191, https://doi.org/10.5194/amt-11-1181-2018,https://doi.org/10.5194/amt-11-1181-2018, 2018
Short summary
Fluctuations of radio occultation signals in sounding the Earth's atmosphere
Valery Kan, Michael E. Gorbunov, and Viktoria F. Sofieva
Atmos. Meas. Tech., 11, 663–680, https://doi.org/10.5194/amt-11-663-2018,https://doi.org/10.5194/amt-11-663-2018, 2018
Short summary
Quantification of structural uncertainty in climate data records from GPS radio occultation
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013,https://doi.org/10.5194/acp-13-1469-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary
Deriving column-integrated thermospheric temperature with the N2 Lyman–Birge–Hopfield (2,0) band
Clayton Cantrall and Tomoko Matsuo
Atmos. Meas. Tech., 14, 6917–6928, https://doi.org/10.5194/amt-14-6917-2021,https://doi.org/10.5194/amt-14-6917-2021, 2021
Short summary
Atmospheric tomography using the Nordic Meteor Radar Cluster and Chilean Observation Network De Meteor Radars: network details and 3D-Var retrieval
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021,https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Using vertical phase differences to better resolve 3D gravity wave structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021,https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
High-temporal-resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
Tong Ning and Gunnar Elgered
Atmos. Meas. Tech., 14, 5593–5605, https://doi.org/10.5194/amt-14-5593-2021,https://doi.org/10.5194/amt-14-5593-2021, 2021
Short summary

Cited articles

Ao, C.: Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings, Radio Sci., 42, RS2008, https://doi.org/10.1029/2006RS003485, 2007. a
Gorbunov, M.: Wave Optics Propagator Package: Description and User Guide, Technical report for contract eum/co/10/460000812/cja order 4500005632, EUMETSAT, Darmstadt, 2011. a, b, c
Gorbunov, M.: Statistical analysis of systematic errors in RO measurements, ROM SAF Visiting Scientist Report 20, Danish Meteorological Institute, Copenhagen, available at: http://www.romsaf.org/Publications/reports/romsaf_vs20_rep_v11.pdf (last access: 20 December 2017), (SAF/ROM/DMI/REP/VS20/001), 2014. a, b, c, d
Gorbunov, M.: Development of wave optics code for the retrieval of bending angle profiles for reflected rays, ROM SAF CDOP-2, Visiting Scientist Report 27, Danish Meteorological Institute, European Centre for Medium-Range Weather Forecasts, Institut d'Estudis Espacials de Catalunya, Met Office, available at: http://www.romsaf.org/Publications/reports/romsaf_vs27_rep_v10.pdf (last access: 20 December 2017), (SAF/ROM/DMI/REP/VS27/001), 2016. a, b, c
Gorbunov, M. E.: Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci., 37, 9-1–9-10, https://doi.org/10.1029/2000RS002592, 2002. a
Download
Short summary
We study the systematic discreapancies between atmospheric refractivity derived from radio occulation (RO) sounding of the Earth's atmosphere and the reanalyses of the European Centre for Medium-Range Weather Forecasts. We construct a regression-based bias model. The model can be used for the RO data propagation in the new reference occultation processing system (rOPS) including the uncertainty propagation through the retrieval chain.