Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5701-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-11-5701-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extinction and optical depth retrievals for CALIPSO's Version 4 data release
Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
Mark A. Vaughan
NASA Langley Research Center, Hampton, VA 23681, USA
Anne Garnier
Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
Jason L. Tackett
Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
James D. Lambeth
Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
Kathleen A. Powell
NASA Langley Research Center, Hampton, VA 23681, USA
Related authors
Meloë S. Kacenelenbogen, Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, Samuel LeBlanc, Yohei Shinozuka, John Livingston, Qin Zhang, and Kathleen A. Powell
Atmos. Chem. Phys., 19, 4933–4962, https://doi.org/10.5194/acp-19-4933-2019, https://doi.org/10.5194/acp-19-4933-2019, 2019
Short summary
Short summary
Significant efforts are required to estimate the direct radiative effects of aerosols above clouds (DAREcloudy). We have used a combination of passive and active A-Train satellite sensors and derive mainly positive global and regional DAREcloudy values (e.g., global seasonal values between 0.13 and 0.26 W m-2). Despite differences in methods and sensors, the DAREcloudy values in this study are generally higher than previously reported. We discuss the primary reasons for these higher estimates.
Jason L. Tackett, David M. Winker, Brian J. Getzewich, Mark A. Vaughan, Stuart A. Young, and Jayanta Kar
Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, https://doi.org/10.5194/amt-11-4129-2018, 2018
Short summary
Short summary
The CALIPSO level 3 aerosol profile product reports globally gridded, quality-screened monthly mean aerosol extinction profiles retrieved by the spaceborne lidar, CALIOP. This paper describes the quality screening and averaging methods used to generate the product. Impacts of quality screening on reported quantities are evaluated, in particular the change in aerosol extinction profiles and aerosol optical depth. The paper thereby provides guidance on the use of CALIOP aerosol data.
Jayanta Kar, Mark A. Vaughan, Kam-Pui Lee, Jason L. Tackett, Melody A. Avery, Anne Garnier, Brian J. Getzewich, William H. Hunt, Damien Josset, Zhaoyan Liu, Patricia L. Lucker, Brian Magill, Ali H. Omar, Jacques Pelon, Raymond R. Rogers, Travis D. Toth, Charles R. Trepte, Jean-Paul Vernier, David M. Winker, and Stuart A. Young
Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, https://doi.org/10.5194/amt-11-1459-2018, 2018
Short summary
Short summary
We present the motivation for and the implementation of the version 4.1 nighttime 532 nm parallel-channel calibration of the CALIOP lidar. The accuracy of calibration is significantly improved by raising the molecular normalization altitude from 30–34 km to 36–39 km to substantially reduce stratospheric aerosol contamination. The new calibration procedure eliminates biases in earlier versions and leads to an improved representation of stratospheric aerosols.
Andrew T. Prata, Stuart A. Young, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, https://doi.org/10.5194/acp-17-8599-2017, 2017
Short summary
Short summary
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by analysing satellite observations of three different volcanic eruptions. Our results indicate that ash particles have distinctive optical properties when compared to sulfates. We expect our results will improve space-borne lidar detection of volcanic aerosols and provide new insight into their interaction with the atmosphere and solar radiation.
R. R. Rogers, M. A. Vaughan, C. A. Hostetler, S. P. Burton, R. A. Ferrare, S. A. Young, J. W. Hair, M. D. Obland, D. B. Harper, A. L. Cook, and D. M. Winker
Atmos. Meas. Tech., 7, 4317–4340, https://doi.org/10.5194/amt-7-4317-2014, https://doi.org/10.5194/amt-7-4317-2014, 2014
David L. Mitchell, Anne Emilie Garnier, and Sarah Woods
EGUsphere, https://doi.org/10.5194/egusphere-2024-3790, https://doi.org/10.5194/egusphere-2024-3790, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Motivated by the need to better understand the physics of cirrus clouds, a satellite retrieval for cirrus cloud ice water content, ice particle number concentration and effective size was developed by exploiting relationships between cirrus cloud measurements made during field campaigns and cloud radiative properties measured by satellite. These retrievals tested favorably when compared against corresponding aircraft measurements and were found to depend on the visual opacity of the cloud.
David L. Mitchell and Anne Garnier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3814, https://doi.org/10.5194/egusphere-2024-3814, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Arguably the greatest knowledge gap in cirrus cloud research is the relative roles of homogeneous and heterogeneous ice nucleation in cirrus cloud formation. Since this depends on temperature, latitude, season, and topography, a satellite remote sensing method was developed to measure cirrus cloud properties. It was found that cirrus clouds strongly affected by homogeneous ice nucleation may account for over half of the overall cirrus cloud radiative effect during winter outside the tropics.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024, https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
Short summary
We introduce Ocean Derived Column Optical Depth (ODCOD), a new way to estimate column optical depths using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a complement measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established data sets in the daytime but tends to estimate higher at night.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855, https://doi.org/10.5194/essd-16-2831-2024, https://doi.org/10.5194/essd-16-2831-2024, 2024
Short summary
Short summary
Clouds play important roles in both weather and climate. In this paper we describe version 1.0 of a unique global ice cloud data product derived from over 12 years of global spaceborne lidar measurements. This monthly gridded product provides a unique vertically resolved characterization of the occurrence and properties, optical and physical, of thin ice clouds and the tops of deep convective clouds. It should provide significant value for cloud research and model evaluation.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021, https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 as a result of the significant changes implemented in the version 4 algorithms, which are presented in a companion paper (Part I).
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
David L. Mitchell, John Mejia, Anne Garnier, Yuta Tomii, Martina Krämer, and Farnaz Hosseinpour
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-846, https://doi.org/10.5194/acp-2020-846, 2020
Publication in ACP not foreseen
Short summary
Short summary
This may be the first estimate of the radiative contribution of homogeneous ice nucleation in cirrus clouds on a global, regional and seasonal scale. This is achieved by constraining an atmospheric global climate model with measured cirrus cloud properties via satellite remote sensing. The results show that the overall radiative warming contributed by homogeneous ice nucleation at the top of the atmosphere is 2.4 W m-2 outside the ± 30° latitude zone during non-summer months (JJA).
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
Short summary
The Cloud Aerosol Transport System (CATS) demonstrated that direct calibration of 1064 nm lidar data from a spaceborne platform is possible. By normalizing the CATS signal to a modeled molecular backscatter profile the CATS data were calibrated, enabling the derivation of optical properties of clouds and aerosols. Comparisons of the calibrated signal with airborne lidar, ground-based lidar, and spaceborne lidar all show agreement within the estimated error bars of the respective instruments.
Jayanta Kar, Kam-Pui Lee, Mark A. Vaughan, Jason L. Tackett, Charles R. Trepte, David M. Winker, Patricia L. Lucker, and Brian J. Getzewich
Atmos. Meas. Tech., 12, 6173–6191, https://doi.org/10.5194/amt-12-6173-2019, https://doi.org/10.5194/amt-12-6173-2019, 2019
Short summary
Short summary
This work describes the science algorithm for the recently released CALIPSO level 3 stratospheric aerosol product. It is shown that the retrieved extinction profiles capture the major stratospheric perturbations over the last decade resulting from volcanic eruptions, pyroCb smoke events, and signatures of stratospheric dynamics. An initial assessment is also provided by intercomparison with the latest aerosol retrievals from the SAGE III instrument aboard the International Space Station.
Shan Zeng, Mark Vaughan, Zhaoyan Liu, Charles Trepte, Jayanta Kar, Ali Omar, David Winker, Patricia Lucker, Yongxiang Hu, Brian Getzewich, and Melody Avery
Atmos. Meas. Tech., 12, 2261–2285, https://doi.org/10.5194/amt-12-2261-2019, https://doi.org/10.5194/amt-12-2261-2019, 2019
Short summary
Short summary
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol discrimination (CAD) algorithm to correctly distinguish between clouds and aerosols detected in the CALIPSO lidar backscatter signals. FKM is an unsupervised learning algorithm, so the classifications it derives are wholly independent from those reported by the CAD scheme. For a full month of measurements, the two techniques agree in ~ 95 % of all cases, providing strong evidence for CAD correctness.
Meloë S. Kacenelenbogen, Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, Samuel LeBlanc, Yohei Shinozuka, John Livingston, Qin Zhang, and Kathleen A. Powell
Atmos. Chem. Phys., 19, 4933–4962, https://doi.org/10.5194/acp-19-4933-2019, https://doi.org/10.5194/acp-19-4933-2019, 2019
Short summary
Short summary
Significant efforts are required to estimate the direct radiative effects of aerosols above clouds (DAREcloudy). We have used a combination of passive and active A-Train satellite sensors and derive mainly positive global and regional DAREcloudy values (e.g., global seasonal values between 0.13 and 0.26 W m-2). Despite differences in methods and sensors, the DAREcloudy values in this study are generally higher than previously reported. We discuss the primary reasons for these higher estimates.
David Painemal, Marian Clayton, Richard Ferrare, Sharon Burton, Damien Josset, and Mark Vaughan
Atmos. Meas. Tech., 12, 2201–2217, https://doi.org/10.5194/amt-12-2201-2019, https://doi.org/10.5194/amt-12-2201-2019, 2019
Short summary
Short summary
We present 1 year of a new CALIOP-based aerosol extinction coefficient and lidar ratio over the ocean, with the goal of providing a flexible dataset for climate research as well as independent retrievals that can be helpful for refining CALIPSO Science Team algorithms. The retrievals are derived by constraining the lidar equation with an aerosol optical depth estimated from cross-calibrated CALIOP and CloudSat surface echos.
Travis D. Toth, Jianglong Zhang, Jeffrey S. Reid, and Mark A. Vaughan
Atmos. Meas. Tech., 12, 1739–1754, https://doi.org/10.5194/amt-12-1739-2019, https://doi.org/10.5194/amt-12-1739-2019, 2019
Short summary
Short summary
An innovative method is presented for deriving particulate matter (PM) concentrations using CALIOP measurements. Deviating from conventional approaches of relying on passive satellite column-integrated aerosol measurements, PM concentrations are derived from near-surface CALIOP measurements through a bulk-mass-modeling method. This proof-of-concept study shows that, while limited in spatial and temporal coverage, CALIOP exhibits reasonable skill for PM applications.
Zhaoyan Liu, Jayanta Kar, Shan Zeng, Jason Tackett, Mark Vaughan, Melody Avery, Jacques Pelon, Brian Getzewich, Kam-Pui Lee, Brian Magill, Ali Omar, Patricia Lucker, Charles Trepte, and David Winker
Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, https://doi.org/10.5194/amt-12-703-2019, 2019
Short summary
Short summary
We describe the enhancements made to the cloud–aerosol discrimination (CAD) algorithms used to produce the CALIPSO version 4 (V4) data products. Revisions to the CAD probability distribution functions have greatly improved the recognition of aerosol layers lofted into the upper troposphere, and CAD is now applied to all layers detected in the stratosphere and all layers detected at single-shot resolution. Detailed comparisons show significant improvements relative to previous versions.
Mark Vaughan, Anne Garnier, Damien Josset, Melody Avery, Kam-Pui Lee, Zhaoyan Liu, William Hunt, Jacques Pelon, Yongxiang Hu, Sharon Burton, Johnathan Hair, Jason L. Tackett, Brian Getzewich, Jayanta Kar, and Sharon Rodier
Atmos. Meas. Tech., 12, 51–82, https://doi.org/10.5194/amt-12-51-2019, https://doi.org/10.5194/amt-12-51-2019, 2019
Short summary
Short summary
The version 4 (V4) release of the CALIPSO data products includes substantial improvements to the calibration of the CALIOP 1064 nm channel. In this paper we review the fundamentals of 1064 nm lidar calibration, explain the motivations for the changes made to the algorithm, and describe the mechanics of the V4 calibration technique. Internal consistency checks and comparisons to collocated high spectral resolution lidar measurements show the V4 1064 nm calibration coefficients to within ~ 3 %.
David L. Mitchell, Anne Garnier, Jacques Pelon, and Ehsan Erfani
Atmos. Chem. Phys., 18, 17325–17354, https://doi.org/10.5194/acp-18-17325-2018, https://doi.org/10.5194/acp-18-17325-2018, 2018
Short summary
Short summary
To realistically model a changing climate, global measurements of cirrus cloud ice-particle number concentration (N) and size (De) are needed, through which one may infer the general mechanism of ice formation. A satellite remote sensing method was developed to measure N and De. It was found that N was highest and De lowest at high latitudes. In the Arctic, cirrus clouds occurred much more often during winter, which may have an impact on mid-latitude winter weather.
Brian J. Getzewich, Mark A. Vaughan, William H. Hunt, Melody A. Avery, Kathleen A. Powell, Jason L. Tackett, David M. Winker, Jayanta Kar, Kam-Pui Lee, and Travis D. Toth
Atmos. Meas. Tech., 11, 6309–6326, https://doi.org/10.5194/amt-11-6309-2018, https://doi.org/10.5194/amt-11-6309-2018, 2018
Short summary
Short summary
We describe the new architecture of the version 4 (V4) CALIOP 532 nm daytime calibration procedures. Critical differences from the versions include moving the night-to-day calibration transfer region into the lower stratosphere coupled to a multi-dimensional data averaging scheme. Comparisons to collocated high spectral resolution lidar (HSRL) measurements shows that the V4 532 nm daytime attenuated backscatter coefficients replicate the HSRL data to within 1.0 % ± 3.5 %.
Man-Hae Kim, Ali H. Omar, Jason L. Tackett, Mark A. Vaughan, David M. Winker, Charles R. Trepte, Yongxiang Hu, Zhaoyan Liu, Lamont R. Poole, Michael C. Pitts, Jayanta Kar, and Brian E. Magill
Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, https://doi.org/10.5194/amt-11-6107-2018, 2018
Short summary
Short summary
This paper discusses recent advances made in distinguishing among different aerosols species detected in the CALIPSO lidar measurements. A new classification algorithm now classifies four different aerosol types in the stratosphere, and the number of aerosol types recognized in the troposphere has increased from six to seven. The lidar ratios characterizing each type have been updated and the effects of these changes on CALIPSO retrievals of aerosol optical depth are examined in detail.
Jason L. Tackett, David M. Winker, Brian J. Getzewich, Mark A. Vaughan, Stuart A. Young, and Jayanta Kar
Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, https://doi.org/10.5194/amt-11-4129-2018, 2018
Short summary
Short summary
The CALIPSO level 3 aerosol profile product reports globally gridded, quality-screened monthly mean aerosol extinction profiles retrieved by the spaceborne lidar, CALIOP. This paper describes the quality screening and averaging methods used to generate the product. Impacts of quality screening on reported quantities are evaluated, in particular the change in aerosol extinction profiles and aerosol optical depth. The paper thereby provides guidance on the use of CALIOP aerosol data.
Xiaomei Lu, Yongxiang Hu, Yuekui Yang, Mark Vaughan, Zhaoyan Liu, Sharon Rodier, William Hunt, Kathy Powell, Patricia Lucker, and Charles Trepte
Atmos. Meas. Tech., 11, 3281–3296, https://doi.org/10.5194/amt-11-3281-2018, https://doi.org/10.5194/amt-11-3281-2018, 2018
Short summary
Short summary
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. The surface bidirectional reflectances retrieved from CALIOP measurements contribute complementary data for existing MODIS standard data products and could be used to detect and monitor seasonal surface reflectance changes in high latitude regions where passive MODIS measurements are limited.
Quentin Bourgeois, Annica M. L. Ekman, Jean-Baptiste Renard, Radovan Krejci, Abhay Devasthale, Frida A.-M. Bender, Ilona Riipinen, Gwenaël Berthet, and Jason L. Tackett
Atmos. Chem. Phys., 18, 7709–7720, https://doi.org/10.5194/acp-18-7709-2018, https://doi.org/10.5194/acp-18-7709-2018, 2018
Short summary
Short summary
The altitude of aerosols is crucial as they can impact cloud formation and radiation. In this study, satellite observations have been used to characterize the global aerosol optical depth (AOD) in the boundary layer and the free troposphere. The free troposphere contributes 39 % to the global AOD during daytime. Overall, the results have implications for the description of budgets, sources, sinks and transport of aerosol particles as presently described in the atmospheric model.
Anne Garnier, Thierry Trémas, Jacques Pelon, Kam-Pui Lee, Delphine Nobileau, Lydwine Gross-Colzy, Nicolas Pascal, Pascale Ferrage, and Noëlle A. Scott
Atmos. Meas. Tech., 11, 2485–2500, https://doi.org/10.5194/amt-11-2485-2018, https://doi.org/10.5194/amt-11-2485-2018, 2018
Short summary
Short summary
Residual calibration biases affecting CALIPSO IIR Version 1 calibrated radiances in the Northern Hemisphere are analyzed and reduced through in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels.
Jayanta Kar, Mark A. Vaughan, Kam-Pui Lee, Jason L. Tackett, Melody A. Avery, Anne Garnier, Brian J. Getzewich, William H. Hunt, Damien Josset, Zhaoyan Liu, Patricia L. Lucker, Brian Magill, Ali H. Omar, Jacques Pelon, Raymond R. Rogers, Travis D. Toth, Charles R. Trepte, Jean-Paul Vernier, David M. Winker, and Stuart A. Young
Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, https://doi.org/10.5194/amt-11-1459-2018, 2018
Short summary
Short summary
We present the motivation for and the implementation of the version 4.1 nighttime 532 nm parallel-channel calibration of the CALIOP lidar. The accuracy of calibration is significantly improved by raising the molecular normalization altitude from 30–34 km to 36–39 km to substantially reduce stratospheric aerosol contamination. The new calibration procedure eliminates biases in earlier versions and leads to an improved representation of stratospheric aerosols.
Travis D. Toth, James R. Campbell, Jeffrey S. Reid, Jason L. Tackett, Mark A. Vaughan, Jianglong Zhang, and Jared W. Marquis
Atmos. Meas. Tech., 11, 499–514, https://doi.org/10.5194/amt-11-499-2018, https://doi.org/10.5194/amt-11-499-2018, 2018
Andrew T. Prata, Stuart A. Young, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, https://doi.org/10.5194/acp-17-8599-2017, 2017
Short summary
Short summary
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by analysing satellite observations of three different volcanic eruptions. Our results indicate that ash particles have distinctive optical properties when compared to sulfates. We expect our results will improve space-borne lidar detection of volcanic aerosols and provide new insight into their interaction with the atmosphere and solar radiation.
Anne Garnier, Noëlle A. Scott, Jacques Pelon, Raymond Armante, Laurent Crépeau, Bruno Six, and Nicolas Pascal
Atmos. Meas. Tech., 10, 1403–1424, https://doi.org/10.5194/amt-10-1403-2017, https://doi.org/10.5194/amt-10-1403-2017, 2017
Short summary
Short summary
An assessment of IIR radiances after 9.5 years of nearly continuous operation since June 2006 is presented. First, IIR is compared with similar MODIS or SEVIRI channels in various conditions. Second, clear sky measurements in each channel are compared with simulations. The first approach detects biases and/or trends, and the second approach contributes to identifying which channel deviates from the other. The analyses are based on simulations using the 4A/OP radiative transfer model.
David L. Mitchell, Anne Garnier, Melody Avery, and Ehsan Erfani
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1062, https://doi.org/10.5194/acp-2016-1062, 2016
Revised manuscript not accepted
Short summary
Short summary
Although the main objective of our DOE/Atmospheric Systems Research project was to use aircraft measurements to determine the formation (i.e. ice nucleation) mechanism of cirrus clouds, it soon became evident that the formation mechanism will depend on latitude, season and surface topography. A new satellite remote sensing method was developed to discover this dependency, which shows that roughly half or more of the cirrus clouds at high latitudes form through homogeneous ice nucleation.
Robert E. Holz, Steven Platnick, Kerry Meyer, Mark Vaughan, Andrew Heidinger, Ping Yang, Gala Wind, Steven Dutcher, Steven Ackerman, Nandana Amarasinghe, Fredrick Nagle, and Chenxi Wang
Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, https://doi.org/10.5194/acp-16-5075-2016, 2016
A. Garnier, J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson
Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, https://doi.org/10.5194/amt-8-2759-2015, 2015
Short summary
Short summary
Cloud absorption optical depths retrieved at 12.05 microns are compared to extinction optical depths retrieved at 0.532 microns from perfectly co-located observations of single-layered semi-transparent cirrus over oceans made by the space-borne CALIPSO IIR infrared radiometer and CALIOP lidar. A new relationship describing the temperature-dependent effect of multiple scattering in the CALIOP retrievals is derived and discussed.
T. Fauchez, P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer
Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015, https://doi.org/10.5194/amt-8-633-2015, 2015
Z. Liu, D. Winker, A. Omar, M. Vaughan, J. Kar, C. Trepte, Y. Hu, and G. Schuster
Atmos. Chem. Phys., 15, 1265–1288, https://doi.org/10.5194/acp-15-1265-2015, https://doi.org/10.5194/acp-15-1265-2015, 2015
J. R. Campbell, M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton
Atmos. Meas. Tech., 8, 435–449, https://doi.org/10.5194/amt-8-435-2015, https://doi.org/10.5194/amt-8-435-2015, 2015
Short summary
Short summary
Digital thresholds based on 2012 CALIOP satellite lidar measurements are investigated for distinguishing cirrus cloud presence, including cloud top temperatures and heights combined with layer depolarization and phase and optical depths. A cloud top temperature of -37 C is found to exhibit the most stable performance, owing to it being the point of homogeneous liquid-water freezing. Depolarization and phase help but are mostly ambiguous at warmer temperatures where mixed-phase clouds propagate.
R. R. Rogers, M. A. Vaughan, C. A. Hostetler, S. P. Burton, R. A. Ferrare, S. A. Young, J. W. Hair, M. D. Obland, D. B. Harper, A. L. Cook, and D. M. Winker
Atmos. Meas. Tech., 7, 4317–4340, https://doi.org/10.5194/amt-7-4317-2014, https://doi.org/10.5194/amt-7-4317-2014, 2014
S. P. Burton, M. A. Vaughan, R. A. Ferrare, and C. A. Hostetler
Atmos. Meas. Tech., 7, 419–436, https://doi.org/10.5194/amt-7-419-2014, https://doi.org/10.5194/amt-7-419-2014, 2014
J.-F. Gayet, V. Shcherbakov, L. Bugliaro, A. Protat, J. Delanoë, J. Pelon, and A. Garnier
Atmos. Chem. Phys., 14, 899–912, https://doi.org/10.5194/acp-14-899-2014, https://doi.org/10.5194/acp-14-899-2014, 2014
S. Lolli, A. Delaval, C. Loth, A. Garnier, and P. H. Flamant
Atmos. Meas. Tech., 6, 3349–3358, https://doi.org/10.5194/amt-6-3349-2013, https://doi.org/10.5194/amt-6-3349-2013, 2013
F. J. S. Lopes, E. Landulfo, and M. A. Vaughan
Atmos. Meas. Tech., 6, 3281–3299, https://doi.org/10.5194/amt-6-3281-2013, https://doi.org/10.5194/amt-6-3281-2013, 2013
S. Rodier, Y. Hu, and M. Vaughan
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4681-2013, https://doi.org/10.5194/tcd-7-4681-2013, 2013
Revised manuscript has not been submitted
O. Sourdeval, L. C. -Labonnote, G. Brogniez, O. Jourdan, J. Pelon, and A. Garnier
Atmos. Chem. Phys., 13, 8229–8244, https://doi.org/10.5194/acp-13-8229-2013, https://doi.org/10.5194/acp-13-8229-2013, 2013
S. P. Burton, R. A. Ferrare, M. A. Vaughan, A. H. Omar, R. R. Rogers, C. A. Hostetler, and J. W. Hair
Atmos. Meas. Tech., 6, 1397–1412, https://doi.org/10.5194/amt-6-1397-2013, https://doi.org/10.5194/amt-6-1397-2013, 2013
D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers
Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, https://doi.org/10.5194/acp-13-3345-2013, 2013
P. J. Sheridan, E. Andrews, J. A. Ogren, J. L. Tackett, and D. M. Winker
Atmos. Chem. Phys., 12, 11695–11721, https://doi.org/10.5194/acp-12-11695-2012, https://doi.org/10.5194/acp-12-11695-2012, 2012
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Retrieving cloud base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Discriminating between "Drizzle or rain" and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
3-D Cloud Masking Across a Broad Swath using Multi-angle Polarimetry and Deep Learning
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Liquid cloud optical property retrieval and associated uncertainties using multi-angular and bispectral measurements of the airborne radiometer OSIRIS
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-141, https://doi.org/10.5194/amt-2024-141, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In satellite remote sensing, estimating cloud base height (CBH) is more challenging than estimating cloud top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI instrument on JAXA’s GCOM-C satellite to estimate CBH together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-87, https://doi.org/10.5194/amt-2024-87, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine-learning method. Retrievals from a machine learning algorithm are used to provide initial guesses, and a radiative transfer model is used to create radiance lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and is applicable both daytime and nighttime conditions.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-40, https://doi.org/10.5194/amt-2024-40, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we measured that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2392, https://doi.org/10.5194/egusphere-2023-2392, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles, and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Cited articles
Avery, M., Ryan, R., Getzewich, B., Vaughan, M., Winker, D., Hu, Y., and
Trepte, C.: Impact of Near-Nadir Viewing Angles on CALIOP V4.1 Cloud
Thermodynamic Phase Assignments, in preparation, 2018.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B.,
and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples,
Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H., Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol
classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–1412, https://doi.org/10.5194/amt-6-1397-2013, 2013.
Chylek, P. and Hallett, J.: Enhanced absorption of solar radiation by cloud
droplets containing soot particles in their surface, Q. J.
Roy. Meteor. Soc., 118, 167–172,
https://doi.org/10.1002/qj.49711850310, 1992.
del Guasta, M.: Errors in the retrieval of thin-cloud optical parameters
obtained with a two-boundary algorithm, Appl. Opt., 37, 5522–5540,
https://doi.org/10.1364/AO.37.005522, 1998.
Di Biagio, C., Pelon, J., Ancellet, G., Bazureau, A., and Mariage, V.:
Sources, load, vertical distribution, and fate of wintertime aerosols north
of Svalbard from combined V4 CALIOP data, ground-based IAOOS lidar
observations and trajectory analysis, J. Geophys. Res.-Atmos., 123,
1363–1383, https://doi.org/10.1002/2017JD027530, 2018.
Fernald, F. G., Herman, B. M., and Reagan, J. A.: Determination of aerosol
height distributions with lidar, J. Appl. Meteorol., 11, 482–489,
https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2,
1972.
Garnier, A., Vaughan, M. A., Dubuisson, P., Josset, D., Pelon, J., and
Winker, D. M.: Multi-sensor cirrus optical depth estimates from CALIPSO, in:
Reviewed & Revised Papers Presented at the 26th International Laser Radar
Conference, Porto Heli, Greece, 25–29 June 2012, 691–694, 2012.
Garnier, A., Pelon, J., Vaughan, M. A., Winker, D. M., Trepte, C. R., and Dubuisson, P.: Lidar multiple scattering
factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans,
Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, 2015.
Getzewich, B. J., Vaughan, M. A., Hunt, W. H., Avery, M. A., Powell, K. A.,
Tackett, J. L., Winker, D. M., Kar, J., Lee, K.-P., and Toth, T.: CALIPSO
Lidar Calibration at 532 nm: Version 4 Daytime Algorithm, Atmos. Meas. Tech.
Discuss., https://doi.org/10.5194/amt-2018-206, in review, 2018.
Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D., Baars, H., Radenz, M., and Farrell, D. A.: Dry versus wet marine
particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength
lidar measurements during SALTRACE, Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, 2017.
Heymsfield, A., Winker, D., Avery, M., Vaughan, M., Diskin, G., Deng, M.,
Mitev, V., and Matthey, R.: Relationships between ice water content and
volume extinction coefficient from in situ observations for temperatures
from 0∘ to -86 ∘ C: Implications for spaceborne lidar
retrievals, J. Appl. Meteorol. Clim., 53, 479–505,
https://doi.org/10.1175/JAMC-D-13-087.1, 2014.
Hostetler, C. A., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M.,
Hunt, W. H., Powell, K. A., and Trepte, C.: CALIOP Algorithm Theoretical
Basis Document, Calibration and Level 1 Data Products, PC-SCI-201, NASA
Langley Research Center, Hampton, VA 23681, 66 pp., available at:
https://www-calipso.larc.nasa.gov/resources/project_documentation.php
(last access: 5 June 2018), 2006.
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S.,
Amarasinghe, N., Nagle, F., and Wang, C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS using
infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, 2016.
Hu, Y.: Depolarization ratio–effective lidar ratio relation: Theoretical
basis for space lidar cloud phase discrimination, Geophys. Res. Lett., 34,
L11812, https://doi.org/10.1029/2007GL029584, 2007.
Hu, Y., Vaughan, M., Liu, Z., Powell, K., and Rodier, S.: Retrieving Optical
Depths and Lidar Ratios for Transparent Layers Above Opaque Water Clouds
from CALIPSO Lidar Measurements, IEEE Geosci. Remote S., 4,
523–526, https://doi.org/10.1109/LGRS.2007.901085, 2007.
Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner,
D., Yang, P., Sun, W., Liu, Z., Wang, Z., Young, S., Stamnes, K., Huang, J.,
Kuehn, R., Baum, B., and Holz, R.: CALIPSO/CALIOP Cloud Phase Discrimination
Algorithm, J. Atmos. Ocean. Tech., 26, 2293–2309,
https://doi.org/10.1175/2009JTECHA1280.1, 2009.
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L.,
and Weimer, C.: CALIPSO lidar description and performance assessment, J. Atmos. Ocean. Tech., 26, 1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Josset, D., Pelon, J., Garnier, A., Hu, Y-X., M. Vaughan, Zhai, P., Kuehn,
R., and Lucker, P.: Cirrus optical depth and lidar ratio retrieval from
combined CALIPSO-CloudSat observations using ocean surface echo, J. Geophys.
Res., 117, D05207, https://doi.org/10.1029/2011JD016959, 2012.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier, A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z.,
Lucker, P. L., Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C. R., Vernier, J.-P., Winker, D. M., and
Young, S. A.: CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech., 11, 1459–1479,
https://doi.org/10.5194/amt-11-1459-2018, 2018.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M.,
Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and
Magill, B. E.: The CALIPSO Version 4 Automated Aerosol Classification and
Lidar Ratio Selection Algorithm, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2018-166, in review, 2018.
Liu, Z., Omar, A. H., Hu, Y., Vaughan, M. A., and Winker, D. M.: CALIOP
Algorithm Theoretical Basis Document, Part 3: Scene Classification
Algorithms, available at:
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf
(last access: 5 June 2018), 2005.
Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell, K.,
Winker, D.,
and Hu, Y.: Estimating Random Errors Due to Shot Noise in Backscatter Lidar
Observations, Appl. Opt., 45, 4437–4447, https://doi.org/10.1364/AO.45.004437, 2006.
Liu, Z., Winker, D., Omar, A., Vaughan, M., Trepte, C., Hu, Y., Powell, K.,
Sun, W., and Lin, B.: Effective lidar ratios of dense dust layers over North
Africa derived from the CALIOP measurements, J. Quant. Spectrosc. Ra., 112, 204–213, https://doi.org/10.1016/j.jqsrt.2010.05.006, 2011.
Liu, Z., Winker, D., Omar, A., Vaughan, M., Kar, J., Trepte, C., Hu, Y., and Schuster, G.: Evaluation of CALIOP 532 nm
aerosol optical depth over opaque water clouds, Atmos. Chem. Phys., 15, 1265–1288, https://doi.org/10.5194/acp-15-1265-2015, 2015.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J.,
Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and
Winker, D.: Discriminating Between Clouds and Aerosols in the CALIOP Version
4.1 Data Products, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-190,
in review, 2018.
Miles, N. L., Verlinde, J., and Clothiaux, E. E.: Cloud droplet size
distributions in low-level stratiform clouds, J. Atmos. Sci., 57, 295–310,
2000.
Miller, S. D. and Stephens, G. L.: Multiple scattering effects in the lidar
pulse stretching problem, J. Geophys. Res., 104, 22205–22219,
https://doi.org/10.1029/1999JD900481, 1999.
Mishchenko, M. I., Liu, L., Cairns, B., and Mackowski, D. W.: Optics of
water cloud droplets mixed with black-carbon aerosols, Opt. Lett. 39,
2607–2610, https://doi.org/10.1364/OL.39.002607, 2014.
Nisantzi, A., Mamouri, R. E., Ansmann, A., Schuster, G. L., and Hadjimitsis, D. G.: Middle East versus Saharan
dust extinction-to-backscatter ratios, Atmos. Chem. Phys., 15, 7071–7084, https://doi.org/10.5194/acp-15-7071-2015, 2015.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K-P., and Hostetler, C. A.: The CALIPSO Automated Aerosol
Classification and Lidar Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Papagiannopoulos, N., Mona, L., Alados-Arboledas, L., Amiridis, V., Baars, H., Binietoglou, I., Bortoli, D., D'Amico, G.,
Giunta, A., Guerrero-Rascado, J. L., Schwarz, A., Pereira, S., Spinelli, N., Wandinger, U., Wang, X., and Pappalardo, G.:
CALIPSO climatological products: evaluation and suggestions from EARLINET, Atmos. Chem. Phys., 16, 2341–2357, https://doi.org/10.5194/acp-16-2341-2016, 2016.
Platnick, S., Ackerman, S., King, M., et al.: MODIS Atmosphere L2 Cloud
Product (06_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight
Center, USA, https://doi.org/10.5067/MODIS/MOD06_L2.006, 2015.
Platt, C. M. R.: Lidar and radiometer observations of cirrus clouds, J.
Atmos. Sci., 30, 1191–1204, https://doi.org/10.1175/1520-0469(1973)030<1191:LAROOC>2.0.CO;2, 1973.
Reverdy, M., Chepfer, H., Donovan, D., Noel, V., Cesana, G., Hoareau, C.,
Chiriaco, M., and Bastin, S.: An EarthCARE/ATLID simulator to evaluate cloud
description in climate models, J. Geophys. Res.-Atmos., 120, 11090–11113,
doi:10.1002/2015JD023919, 2015.
Rogers, R. R., Vaughan, M. A., Hostetler, C. A., Burton, S. P., Ferrare, R. A., Young, S. A., Hair, J. W., Obland, M. D., Harper, D. B.,
Cook, A. L., and Winker, D. M.: Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral
resolution lidar data, Atmos. Meas. Tech., 7, 4317–4340, https://doi.org/10.5194/amt-7-4317-2014, 2014.
Schuster, G. L., Vaughan, M., MacDonnell, D., Su, W., Winker, D., Dubovik, O., Lapyonok, T., and Trepte, C.: Comparison of
CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust,
Atmos. Chem. Phys., 12, 7431–7452, https://doi.org/10.5194/acp-12-7431-2012, 2012.
Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., and Kar, J.: CALIPSO lidar level 3 aerosol
profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, 2018.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Mattis, I., Heese,
B., Freudenthaler, V., Wiegner, M., Esselborn, M., Pisani, G., and Knippertz,
P.: Vertical profiling of Saharan dust with Raman lidars and airborne HSRL
in southern Morocco during SAMUM, Tellus B, 61, 144–164,
https://doi.org/10.1111/j.1600-0889.2008.00390.x, 2009.
Twomey, S.: Influence of pollution on shortwave albedo of clouds, J. Atmos.
Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M.,
Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one
full circuit around the globe, Nat. Geosci., 2, 557–560,
https://doi.org/10.1038/NGEO583, 2009.
Vaughan, M., Powell, K., Kuehn, R., Young, S., Winker, D., Hostetler, C.,
Hunt, W., Liu, Z., McGill, M., and Getzewich, B.: Fully Automated Detection
of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements, J. Atmos.
Ocean. Technol., 26, 2034–2050, https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Vaughan, M., Garnier, A., Josset, D., Avery, M., Lee, K.-P., Liu, Z., Hunt,
W., Pelon, J., Hu, Y., Burton, S., Hair, J., Tackett, J. L., Getzewich, B.,
Kar, J., and Rodier, S.: CALIPSO Lidar Calibration at 1064 nm: Version 4
Algorithm, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-303, in
review, 2018a.
Vaughan, M., Lee, K.-P., Garnier, A., Getzewich, B., and Pelon, J.: Surface
Detection Algorithm for Space-based Lidars, in preparation, 2018b.
Vaughan, M., Pitts, M., Trepte, C., Winker, D., Detweiler, P., Garnier, A.,
Getzewich, B., Hunt, W., Lambeth, J., Lee, K.-P., Lucker, P., Murray, T.,
Rodier, S., Tremas, T., Bazureau, A., and Pelon, J.: Cloud-Aerosol LIDAR
Infrared Pathfinder Satellite Observations (CALIPSO) data management system
data products catalog, Release 4.40, NASA Langley Research Center Document
PC-SCI-503, 173 pp., available at:
https://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_Rev4x40.pdf (last
access: 5 June 2018), 2018c.
Vaughan, M. A., Winker, D. M., and Powell, K. A.: CALIOP Algorithm
Theoretical Basis Document, Part 2: Feature Detection and Layers Properties
Algorithms. PC-SCI-202 Part 2, Release 1.01, available at:
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf,
last access: 27 September 2005.
Venkata, S. L. and Reagan, J. A.: Aerosol retrievals from CALIPSO lidar
ocean surface returns, Remote Sensing, 8, 1006, https://doi.org/10.3390/rs8121006, 2016.
Wandinger, U., Tesche, M., Seifert, P., Ansmann, A., Müller, D., and
Althausen, D.: Size matters: Influence of multiple scattering on CALIPSO
light-extinction profiling in desert dust, Geophys. Res. Lett., 37,
L10801, https://doi.org/10.1029/2010GL042815, 2010.
Winker, D. M.: Accounting for multiple scattering in retrievals from space
lidar, Proc. SPIE Int. Soc. Opt. Eng., 5059, 128–139, 2003.
Winker, D. M., Pelon, J., Coakley, Jr. J. A., Ackerman, S. A., Charlson, R.
J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar,
T. L., Le Treut, H., McCormick, M. P., Mégie, G., Poole, L., Powell,
K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: A
global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91,
1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Winker, D. M., Vaughan, M. A., Omar, A. H., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Wittbom, C., Eriksson, A. C., Rissler, J., Carlsson, J. E., Roldin, P., Nordin, E. Z., Nilsson, P. T., Swietlicki, E.,
Pagels, J. H., and Svenningsson, B.: Cloud droplet activity changes of soot aerosol upon smog chamber ageing,
Atmos. Chem. Phys., 14, 9831–9854, https://doi.org/10.5194/acp-14-9831-2014, 2014.
Yang, P., Bi, L., Baum, B. A., Liou K.-N., Kattawar, G., and Mishchenko, M.:
Spectrally consistent scattering, absorption, and polarization properties of
atmospheric ice crystals at wavelengths from 0.2 µm to 100 µm,
J. Atmos. Sci., 70, 330–347, https://doi.org/10.1175/JAS-D-12-039.1, 2013.
Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate
extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) data: Algorithm description, J. Atmos. Ocean. Tech., 26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: The retrieval
of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared
Pathfinder Satellite Observations (CALIPSO) data: Uncertainty and error
sensitivity analyses. J. Atmos. Ocean. Tech., 30, 395–428,
https://doi.org/10.1175/JTECH-D-12-00046.1, 2013.
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: Corrigendum,
J. Atmos. Ocean. Tech., 33, 1795–1798, https://doi.org/10.1175/JTECH-D-16-0081.1,
2016.
Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prospero, J. M., Omar,
A., Winker, D., Yang, Y., Zhang, Y., Zhang, Z., and Zhao, C.: The
Fertilizing Role of African Dust in the Amazon Rainforest: A First Multiyear
Assessment Based on CALIPSO Lidar Observations, Geophys. Res. Lett., 42,
1984–1991, https://doi.org/10.1002/2015GL063040, 2015.
Short summary
This paper describes comprehensive upgrades to the algorithms used to retrieve altitude-resolved profiles of cloud and aerosol extinction coefficients from the elastic backscatter measurements made by the space-based CALIPSO lidar. The CALIPSO version 4 data products generated by these new algorithms are explored in detail, and the many areas of improvement are highlighted using extensive comparisons both to previous versions and to collocated measurements made by space-based passive sensors.
This paper describes comprehensive upgrades to the algorithms used to retrieve altitude-resolved...
Special issue