Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1531-2019
https://doi.org/10.5194/amt-12-1531-2019
Research article
 | 
12 Mar 2019
Research article |  | 12 Mar 2019

Detecting cloud contamination in passive microwave satellite measurements over land

Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires

Related authors

Inter-calibrating SMMR brightness temperatures over continental surfaces
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020,https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024,https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024,https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024,https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
The EarthCARE mission: science data processing chain overview
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024,https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary

Cited articles

Aires, F., Prigent, C., Rossow, W. B., and Rothstein, M.: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res.-Atmos., 106, 14887–14907, https://doi.org/10.1029/2001JD900085, 2001. a, b
Aires, F., Marquisseau, F., Prigent, C., and Sèze, G.: A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations, Mon. Weather Rev., 139, 2347–2366, https://doi.org/10.1175/MWR-D-10-05012.1, 2011. a, b, c, d
Berg, W.: GPM GMI_R Common Calibrated Brightness Temperatures Collocated L1C 1.5 h 13 km V05, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), available at: https://doi.org/10.5067/GPM/GMI/R/1C/05, 2016. 
Bridle, J. S.: Probabilistic Interpretation of Feedforward Classification Network Outputs with Relationships to Statistical Pattern Recognition, NATO ASI Series in Systems and Computer Science, 227–236, https://doi.org/10.1007/978-3-642-76153-9_28, 1989. a
Buehler, S. A., Kuvatov, M., Sreerekha, T. R., John, V. O., Rydberg, B., Eriksson, P., and Notholt, J.: A cloud filtering method for microwave upper tropospheric humidity measurements, Atmos. Chem. Phys., 7, 5531–5542, https://doi.org/10.5194/acp-7-5531-2007, 2007. a, b
Download
Short summary
Land surface parameters (such as temperature) can be extracted from passive microwave satellite observations, with less cloud contamination than in the infrared. A cloud contamination index is proposed to detect cloud contamination for multiple frequency ranges (from 10 to 190 GHz), to be applicable to the successive generations of MW instruments. Even with a reduced number of low-frequency channels over land, the index reaches an accuracy of ≥ 70 % in detecting contaminated observations.