Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1889-2019
https://doi.org/10.5194/amt-12-1889-2019
Research article
 | 
25 Mar 2019
Research article |  | 25 Mar 2019

Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS)

Andrew O. Langford, Raul J. Alvarez II, Guillaume Kirgis, Christoph J. Senff, Dani Caputi, Stephen A. Conley, Ian C. Faloona, Laura T. Iraci, Josette E. Marrero, Mimi E. McNamara, Ju-Mee Ryoo, and Emma L. Yates

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andrew O. Langford on behalf of the Authors (16 Feb 2019)  Author's response    Manuscript
ED: Publish as is (06 Mar 2019) by Folkert Boersma
Download
Short summary
Lidar, aircraft, and surface measurements of ozone made during the 2016 California Baseline Ozone Transport Study (CABOTS) are compared to assess their validity and verify their suitability for investigations into the contributions of stratosphere-to-troposphere transport, Asian pollution, and wildfires to summertime surface ozone concentrations in the San Joaquin Valley of California. Our analysis shows that the lidar and aircraft measurements agree, on average, to within ±5 ppbv.