Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1889–1904, 2019
https://doi.org/10.5194/amt-12-1889-2019
Atmos. Meas. Tech., 12, 1889–1904, 2019
https://doi.org/10.5194/amt-12-1889-2019
Research article
25 Mar 2019
Research article | 25 Mar 2019

Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS)

Andrew O. Langford et al.

Related authors

Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-276,https://doi.org/10.5194/acp-2022-276, 2022
Preprint under review for ACP
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS)
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022,https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Subseasonal prediction of springtime Pacific–North American transport using upper-level wind forecasts
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021,https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021,https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Evaluation of UV aerosol retrievals from an ozone lidar
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020,https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Satellite data validation: a parametrization of the natural variability of atmospheric mixing ratios
Alexandra Laeng, Thomas von Clarmann, Quentin Errera, Udo Grabowski, and Shawn Honomichl
Atmos. Meas. Tech., 15, 2407–2416, https://doi.org/10.5194/amt-15-2407-2022,https://doi.org/10.5194/amt-15-2407-2022, 2022
Short summary
Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations
Carlos Alberti, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, and Thorsten Warneke
Atmos. Meas. Tech., 15, 2199–2229, https://doi.org/10.5194/amt-15-2199-2022,https://doi.org/10.5194/amt-15-2199-2022, 2022
Short summary
A comparison of the impact of TROPOMI and OMI tropospheric NO2 on global chemical data assimilation
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022,https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 1: Synthetic dataset for validation of trace gas retrieval algorithms
Claudia Emde, Huan Yu, Arve Kylling, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 1587–1608, https://doi.org/10.5194/amt-15-1587-2022,https://doi.org/10.5194/amt-15-1587-2022, 2022
Short summary
Variations of Arctic winter ozone from the LIMS Level 3 dataset
Ellis Remsberg, Murali Natarajan, and Ernest Hilsenrath
Atmos. Meas. Tech., 15, 1521–1535, https://doi.org/10.5194/amt-15-1521-2022,https://doi.org/10.5194/amt-15-1521-2022, 2022
Short summary

Cited articles

Alvarez, R. J., II, Senff, C. J., Langford, A. O., Weickmann, A. M., Law, D. C., Machol, J. L., Merritt, D. A., Marchbanks, R. D., Sandberg, S. P., Brewer, W. A., Hardesty, R. M., and Banta, R. M.: Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling, J. Atmos. Ocean Tech., 28, 1258–1272, https://doi.org/10.1175/Jtech-D-10-05044.1, 2011. 
Ancellet, G. and Ravetta, F.: Analysis and validation of ozone variability observed by lidar during the ESCOMPTE-2001 campaign, Atmos. Res., 74, 435–459, https://doi.org/10.1016/j.atmosres.2004.10.003, 2005. 
Asher, E. C., Christensen, J. N., Post, A., Perry, K., Cliff, S. S., Zhao, Y. J., Trousdell, J., and Faloona, I.: The Transport of Asian Dust and Combustion Aerosols and Associated Ozone to North America as Observed From a Mountaintop Monitoring Site in the California Coast Range, J. Geophys. Res.-Atmos., 123, 5667–5680, https://doi.org/10.1029/2017jd028075, 2018. 
Avnery, S., Mauzerall, D. L., Liu, J. F., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O-3 pollution, Atmos. Environ., 45, 2297–2309, https://doi.org/10.1016/j.atmosenv.2011.01.002, 2011a. 
Avnery, S., Mauzerall, D. L., Liu, J. F., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos. Environ., 45, 2284–2296, https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011b. 
Download
Short summary
Lidar, aircraft, and surface measurements of ozone made during the 2016 California Baseline Ozone Transport Study (CABOTS) are compared to assess their validity and verify their suitability for investigations into the contributions of stratosphere-to-troposphere transport, Asian pollution, and wildfires to summertime surface ozone concentrations in the San Joaquin Valley of California. Our analysis shows that the lidar and aircraft measurements agree, on average, to within ±5 ppbv.