Articles | Volume 12, issue 3
Research article
26 Mar 2019
Research article |  | 26 Mar 2019

Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface

Christopher J. Crawford, Jeannette van den Bosch, Kelly M. Brunt, Milton G. Hom, John W. Cooper, David J. Harding, James J. Butler, Philip W. Dabney, Thomas A. Neumann, Craig S. Cleckner, and Thorsten Markus


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christopher Crawford on behalf of the Authors (30 Jan 2019)  Author's response   Manuscript 
ED: Publish as is (12 Feb 2019) by Alexander Kokhanovsky
AR by Christopher Crawford on behalf of the Authors (06 Mar 2019)
Short summary
This paper presents laboratory and in-flight radiometric methods to calibrate and deploy a full-spectrum non-imaging airborne visible-to-shortwave infrared (VSWIR) spectrometer to measure polar ice sheet surface optical properties. Using an atmospheric radiative transfer model and coincident Landsat 8 multispectral image, this study concluded that it is possible to measure bright Greenland ice and dark bare rock/soil targets at an airborne remote sensing uncertainty of between 0.6 and 4.7.