Articles | Volume 12, issue 10
Atmos. Meas. Tech., 12, 5573–5591, 2019
https://doi.org/10.5194/amt-12-5573-2019
Atmos. Meas. Tech., 12, 5573–5591, 2019
https://doi.org/10.5194/amt-12-5573-2019
Research article
22 Oct 2019
Research article | 22 Oct 2019

Analysis of the lightning production of convective cells

Jordi Figueras i Ventura et al.

Related authors

Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021,https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Polarimetric radar characteristics of lightning initiation and propagating channels
Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi
Atmos. Meas. Tech., 12, 2881–2911, https://doi.org/10.5194/amt-12-2881-2019,https://doi.org/10.5194/amt-12-2881-2019, 2019
Short summary
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016,https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023,https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023,https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022,https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022,https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary

Cited articles

Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Buiat, M., Porcù, F., and Dietrich, S.: Observing relationships between lightning and cloud profiles by means of a satellite-borne cloud radar, Atmos. Meas. Tech., 10, 221–230, https://doi.org/10.5194/amt-10-221-2017, 2017. a
Carey, L. D. and Rutledge, S. A.: The Relationship between Precipitation and Lightning in Tropical Island Convection: A C-Band Polarimetric Radar Study, Mon. Weather Rev., 128, 2687–2710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2, a
Doviak, R. and Zrnic, D.: Doppler Radar and Weather Observations, Dover Books on Engineering Series, Dover Publications, Mineola, New York, available at: https://books.google.ch/books?id=ispLkPX9n2UC (last access: 25 September 2019), 2006. a
Emersic, C., Heinselman, P. L., MacGorman, D. R., and Bruning, E. C.: Lightning Activity in a Hail-Producing Storm Observed with Phased-Array Radar, Mon. Weather Rev., 139, 1809–1825, https://doi.org/10.1175/2010MWR3574.1, a
Download
Short summary
This paper presents an analysis of the lightning production of convective cells. Polarimetric weather radar data were used to identify and characterize the convective cells while lightning was detected using the EUCLID network and a lightning mapping array deployed during the summer of 2017 in the northeastern part of Switzerland. In it we show that there is a good correlation between the height of the rimed-particle column and the intensity of the lightning activity in the convective cell.