Articles | Volume 12, issue 11
Atmos. Meas. Tech., 12, 5801–5816, 2019
https://doi.org/10.5194/amt-12-5801-2019
Atmos. Meas. Tech., 12, 5801–5816, 2019
https://doi.org/10.5194/amt-12-5801-2019

Research article 05 Nov 2019

Research article | 05 Nov 2019

Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method

Shayamila Mahagammulla Gamage et al.

Related authors

Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021,https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
Xingou Xu and Ad Stoffelen
Atmos. Meas. Tech., 14, 7435–7451, https://doi.org/10.5194/amt-14-7435-2021,https://doi.org/10.5194/amt-14-7435-2021, 2021
Short summary
Evaluation of convective boundary layer height estimates using radars operating at different frequency bands
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021,https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021,https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021,https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary

Cited articles

Adam, S., Behrendt, A., Schwitalla, T., Hammann, E., and Wulfmeyer, V.: First assimilation of temperature lidar data into an NWP model: impact on the simulation of the temperature field, inversion strength and PBL depth, Q. J. Roy. Meteorol. Soc., 142, 2882–2896, 2016. a
Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles, in: Lidar, 105–141, Springer, New York, 2005. a
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys. B, 55, 18–28, 1992a. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992b. a
Arshinov, Y. F., Bobrovnikov, S., Zuev, V. E., and Mitev, V.: Atmospheric temperature measurements using a pure rotational Raman lidar, Appl. Opt., 22, 2984–2990, 1983. a
Download
Short summary
We present a new method for retrieving temperature from pure rotational Raman (PRR) lidar measurements using an optimal estimation method. We show that the error due to calibration can be reduced significantly using our method. The new method is tested on PRR temperature measurements from the MeteoSwiss Raman Lidar for Meteorological Observations system in different sky conditions. The next step is to assimilate the temperature profiles into models to help improve weather forecasts.