Articles | Volume 12, issue 11
Atmos. Meas. Tech., 12, 5801–5816, 2019
https://doi.org/10.5194/amt-12-5801-2019
Atmos. Meas. Tech., 12, 5801–5816, 2019
https://doi.org/10.5194/amt-12-5801-2019
Research article
05 Nov 2019
Research article | 05 Nov 2019

Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method

Shayamila Mahagammulla Gamage et al.

Related authors

Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021,https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022,https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Hierarchical deconvolution for incoherent scatter radar data
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022,https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022,https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022,https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022,https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary

Cited articles

Adam, S., Behrendt, A., Schwitalla, T., Hammann, E., and Wulfmeyer, V.: First assimilation of temperature lidar data into an NWP model: impact on the simulation of the temperature field, inversion strength and PBL depth, Q. J. Roy. Meteorol. Soc., 142, 2882–2896, 2016. a
Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles, in: Lidar, 105–141, Springer, New York, 2005. a
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys. B, 55, 18–28, 1992a. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992b. a
Arshinov, Y. F., Bobrovnikov, S., Zuev, V. E., and Mitev, V.: Atmospheric temperature measurements using a pure rotational Raman lidar, Appl. Opt., 22, 2984–2990, 1983. a
Download
Short summary
We present a new method for retrieving temperature from pure rotational Raman (PRR) lidar measurements using an optimal estimation method. We show that the error due to calibration can be reduced significantly using our method. The new method is tested on PRR temperature measurements from the MeteoSwiss Raman Lidar for Meteorological Observations system in different sky conditions. The next step is to assimilate the temperature profiles into models to help improve weather forecasts.