Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1033–1049, 2020
https://doi.org/10.5194/amt-13-1033-2020
Atmos. Meas. Tech., 13, 1033–1049, 2020
https://doi.org/10.5194/amt-13-1033-2020

Research article 04 Mar 2020

Research article | 04 Mar 2020

Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach

Bin Yao et al.

Related authors

Scattering matrices of mineral dust aerosols: a refinement of the refractive index impact
Yifan Huang, Chao Liu, Bin Yao, Yan Yin, and Lei Bi
Atmos. Chem. Phys., 20, 2865–2876, https://doi.org/10.5194/acp-20-2865-2020,https://doi.org/10.5194/acp-20-2865-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020,https://doi.org/10.5194/amt-13-6613-2020, 2020
Short summary
In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020,https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP)
Spencer Faber, Jeffrey R. French, and Robert Jackson
Atmos. Meas. Tech., 11, 3645–3659, https://doi.org/10.5194/amt-11-3645-2018,https://doi.org/10.5194/amt-11-3645-2018, 2018
Short summary
A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets
M. Christian Schwartz
Atmos. Meas. Tech., 10, 3041–3055, https://doi.org/10.5194/amt-10-3041-2017,https://doi.org/10.5194/amt-10-3041-2017, 2017
Short summary
Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements
M. Costa-Surós, J. Calbó, J. A. González, and C. N. Long
Atmos. Meas. Tech., 7, 2757–2773, https://doi.org/10.5194/amt-7-2757-2014,https://doi.org/10.5194/amt-7-2757-2014, 2014

Cited articles

Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004. 
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER spectral library version 2.0, Remote Sens. Environ., 113, 711–715, https://doi.org/10.1016/j.rse.2008.11.007, 2009. 
Baum, B. A., Kratz, D. P., Yang, P., Ou, S. C., Hu, H., Soulen, P. F., and Tsay, S.-C.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS.I. Data and models, J. Geophys. Res., 105, 767–780, https://doi.org/10.1029/1999JD901089, 2000. 
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellite, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. 
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, book section 7, Cambridge Univ. Press, Cambridge, UK, New York, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013. 
Download
Short summary
Due to the complex spatiotemporal and physical properties of clouds, their quantitative depictions in different atmospheric reanalysis datasets are still highly uncertain. A radiance-based evaluation approach is developed to evaluate the quality of cloud properties by directly comparing them with satellite radiance observations. ERA5 and CRA are found to have great capability in representing the cloudy atmosphere over East Asia, and MERRA-2 tends to slightly overestimate clouds over the region.