Articles | Volume 13, issue 1
https://doi.org/10.5194/amt-13-219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
Satoshi Ochiai
National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
Eric Dupuy
Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
Richard Larsson
Planets, Max Planck Institute for Solar System Research, Göttingen, Lower Saxony, Germany
Huixin Liu
Department of Earth and Planetary Science, Kyushu University, Fukuoka 812-8581, Japan
Naohiro Manago
Center for Environmental Remote Sensing, Chiba University, Chiba-shi, Japan
Donal Murtagh
Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden
Shin-ichiro Oyama
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya Aichi 464-8601, Japan
Ionosphere Research Unit, University of Oulu, Oulu, Finland
National Institute of Polar Research, Tachikawa-shi, Tokyo 190-8518, Japan
Hideo Sagawa
Division of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan
Akinori Saito
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
Takatoshi Sakazaki
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
Masato Shiotani
Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
Makoto Suzuki
Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan
Related authors
No articles found.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Masaru Kogure, In-Sun Song, Huixin Liu, and Han-Li Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3303, https://doi.org/10.5194/egusphere-2025-3303, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines the impact of increased CO2 on the migrating diurnal tide (DW1), which is generated by solar absorption and latent heating. Using WACCM-X under the RCP 8.5 scenario, we find a +1 %/decade trend in DW1 amplitude at 20–70 km and a −2 %/decade trend at 90–110 km. The increase is likely due to reduced density and stronger convection near the equator, while the decrease may result from enhanced eddy diffusion in the mesosphere that suppresses tidal growth.
Judit Pérez-Coll Jiménez, Nickolay Ivchenko, Ceona Lindstein, Lukas Krasauskas, Jonas Hedin, Donal Patrick Murtagh, Linda Megner, Björn Linder, and Jörg Gumbel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2324, https://doi.org/10.5194/egusphere-2025-2324, 2025
Short summary
Short summary
This study uses images taken by the Swedish satellite MATS to conduct a statistical analysis of the molecular oxygen atmospheric band emissions in the aurora. This auroral emission can not be observed from the ground, making it one of the least understood auroral emissions. Our results provide a new dataset with information on the peak altitude, geomagnetic location, and auroral intensity of 378 events detected between February and April 2023.
Björn Linder, Lukas Krasauskas, Linda Megner, and Donal P. Murtagh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1470, https://doi.org/10.5194/egusphere-2025-1470, 2025
Short summary
Short summary
The Swedish satellite MATS conducts global measurements of atmospheric airglow in the mesosphere and lower thermosphere. In this article, we present the first global results from the mission. Observations from February through April 2023 show that the emission strength is largely controlled by atmospheric tides and by perturbations introduced by a propagating planetary wave.
Björn Linder, Jörg Gumbel, Donal P. Murtagh, Linda Megner, Lukas Krasauskas, Doug Degenstein, Ole Martin Christensen, and Nickolay Ivchenko
EGUsphere, https://doi.org/10.5194/egusphere-2025-493, https://doi.org/10.5194/egusphere-2025-493, 2025
Short summary
Short summary
In this study, the primary instrument carried by the satellite MATS is compared to the OSIRIS instrument onboard the Odin satellite. A total of 36 close approaches between December 2022 and February 2023 were identified and analysed. The comparison reveals that the two instruments have good structural agreement and that MATS detects a signal that is ~20 % stronger than what is measured by OSIRIS.
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman
EGUsphere, https://doi.org/10.5194/egusphere-2025-265, https://doi.org/10.5194/egusphere-2025-265, 2025
Short summary
Short summary
The MATS satellite mission studies atmospheric gravity waves, crucial for momentum transport between atmospheric layers. Launched in November 2022, MATS uses a limb-viewing telescope to capture high-resolution images of Noctilucent clouds and airglow, visualizing wave patterns in the high atmosphere. This paper accompanies the public release of the level 1b data set, i.e. calibrated limb images. Later products will provide global maps of gravity wave properties, airglow and Noctilucent clouds.
Maria Gloria Tan Jun Rios, Claudia Borries, Huixin Liu, and Jens Mielich
Ann. Geophys., 43, 73–89, https://doi.org/10.5194/angeo-43-73-2025, https://doi.org/10.5194/angeo-43-73-2025, 2025
Short summary
Short summary
This study analyzes changes in the ionospheric response to solar flux over five complete solar cycles (1957 to 2023). We use Juliusruh hourly data of the peak electron density of the F2 layer, NmF2, and three solar extreme ultraviolet (EUV) radiation proxies. The response is better represented by a cubic regression, and F30 shows the highest correlation for describing NmF2 dependence over time. These results reveal a decrease in NmF2 influenced by the intensity of the solar activity index.
Huixin Liu
Hist. Geo Space. Sci., 15, 41–42, https://doi.org/10.5194/hgss-15-41-2024, https://doi.org/10.5194/hgss-15-41-2024, 2024
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Anqi Li, Chris Z. Roth, Adam E. Bourassa, Douglas A. Degenstein, Kristell Pérot, Ole Martin Christensen, and Donal P. Murtagh
Earth Syst. Sci. Data, 13, 5115–5126, https://doi.org/10.5194/essd-13-5115-2021, https://doi.org/10.5194/essd-13-5115-2021, 2021
Short summary
Short summary
The nightglow emission originating from the vibrationally excited hydroxyl layer (about 85 km altitude) has been measured by the infrared imager (IRI) on the Odin satellite for more than 15 years. In this study, we document the retrieval steps, the resulting volume emission rates and the layer characteristics. Finally, we use the monthly zonal averages to demonstrate the fidelity of the data set. This unique, long-term data set will be valuable for studying various topics near the mesopause.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Bengt Rydberg, Michael Kiefer, Maya Garcia-Comas, Alyn Lambert, and Kaley A. Walker
Atmos. Meas. Tech., 14, 5823–5857, https://doi.org/10.5194/amt-14-5823-2021, https://doi.org/10.5194/amt-14-5823-2021, 2021
Short summary
Short summary
We present improved Odin/SMR mesospheric H2O concentration and temperature data sets, reprocessed assuming a bigger sideband leakage of the instrument. The validation study shows how the improved SMR data sets agree better with other instruments' observations than the old SMR version did. Given their unique time extension and geographical coverage, and H2O being a good tracer of mesospheric circulation, the new data sets are valuable for the study of dynamical processes and multi-year trends.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Anqi Li, Chris Z. Roth, Kristell Pérot, Ole Martin Christensen, Adam Bourassa, Doug A. Degenstein, and Donal P. Murtagh
Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020, https://doi.org/10.5194/amt-13-6215-2020, 2020
Short summary
Short summary
The OSIRIS IR imager, one of the instruments on the Odin satellite, routinely measures the oxygen airglow at 1.27 μm. In this study, we primarily focus on the steps done for retrieving the calibrated IRA band limb radiance, the volume emission rate of O2(a1∆g) and finally the ozone number density. Specifically, we use a novel approach to address the issue of the measurements that were made close to the local sunrise, where the O2(a1∆g) diverges from the equilibrium state.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Cited articles
Baron, P., Murtagh, D. P., Urban, J., Sagawa, H., Ochiai, S., Kasai, Y., Kikuchi, K., Khosrawi, F., Körnich, H., Mizobuchi, S., Sagi, K., and Yasui, M.: Observation of horizontal winds in the middle-atmosphere between 30∘ S and 55∘ N during the northern winter 2009–2010, Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, 2013. a
Baron, P., Manago, N., Ozeki, H., Irimajiri, Y., Murtagh, D., Uzawa, Y.,
Ochiai, S., Shiotani, M., and Suzuki, M.: Measurement of stratospheric and
mesospheric winds with a submillimeter wave limb sounder: Results from
JEM/SMILES and simulation study for SMILES-2, in: Sensors, Systems, and
Next-Generation Satellites XIX, edited by: Meynart, R., Neeck, S. P., and
Shimoda, H., International Society for Optics and
Photonics, SPIE, 9639, 140–159, https://doi.org/10.1117/12.2194741, 2015. a
Baron, P., Manago, N., Ochiai, S., and Suzuki, M.: SMILES-2 band selection
study for chemical species, IGARSS 2019–2019, Int. Geosci. Remote Se., 7698–7701,
https://doi.org/10.1109/IGARSS.2019.8897703, 2019a. a, b
Baron, P., Ochiai, S., Murtagh, D., Sagawa, H., Saito, A., Shiotani, M., and
Suzuki, M.: Performance assessment of Super conducting Submillimeter-Wave
Limb-Emission Sounder-2 (SMILES-2), IGARSS 2019–2019, Int. Geosci. Remote Se., 7556–7559,
https://doi.org/10.1109/IGARSS.2019.8898496, 2019b. a, b, c, d
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010. a
Beig, G.: Long-term trends in the temperature of the mesosphere/lower
thermosphere region: 1. Anthropogenic influences, J. Geophys. Res.-Space, 116, A00H11, https://doi.org/10.1029/2011JA016646, 2011. a
Chapman, S. and Lindzen, R. S.: Atmospheric tides, D. Reidel Publishing Company and Dordrecht-Holland, Springer Netherlands, 200 pp., https://doi.org/10.1007/978-94-010-3399-2, 1970. a
Christensen, O. M., Eriksson, P., Urban, J., Murtagh, D., Hultgren, K., and Gumbel, J.: Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR, Atmos. Meas. Tech., 8, 1981–1999, https://doi.org/10.5194/amt-8-1981-2015, 2015. a
Doumbia, V., Maute, A., and Richmond, A. D.: Simulation of equatorial
electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics
general circulation model, J. Geophys. Res.-Space,
112, A09309,
https://doi.org/10.1029/2007JA012308, 2007. a, b
Eastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L.,
Codrescu, M., Correira, J. T., Daniell, R. E., England, S. L., Evans, J. S.,
Harvey, J., Krywonos, A., Lumpe, J. D., Richmond, A. D., Rusch, D. W.,
Siegmund, O., Solomon, S. C., Strickland, D. J., Woods, T. N., Aksnes, A.,
Budzien, S. A., Dymond, K. F., Eparvier, F. G., Martinis, C. R., and
Oberheide, J.: The Global-Scale Observations of the Limb and Disk (GOLD)
Mission, Space Sci. Rev., 212, 383–408,
https://doi.org/10.1007/s11214-017-0392-2, 2017. a
Englert, C. R., Brown, C. M., Bach, B., Bach, E., Bach, K., Harlander, J. M.,
Seely, J. F., Marr, K. D., and Miller, I.: High-efficiency echelle gratings
for MIGHTI, the spatial heterodyne interferometers for the ICON mission,
Appl. Opt., 56, 2090–2098, https://doi.org/10.1364/AO.56.002090, 2017. a, b, c
Forbes, J. M., Russell, J., Miyahara, S., Zhang, X., Palo, S., Mlynczak, M.,
Mertens, C. J., and Hagan, M. E.: Troposphere-thermosphere tidal coupling as
measured by the SABER instrument on TIMED during July–September 2002,
J. Geophys. Res.-Space, 111, A10S06,
https://doi.org/10.1029/2005JA011492, 2006. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
García-Comas, M., Funke, B., Gardini, A., López-Puertas, M., Jurado-Navarro, A., von Clarmann, T., Stiller, G., Kiefer, M., Boone, C. D., Leblanc, T., Marshall, B. T., Schwartz, M. J., and Sheese, P. E.: MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements, Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, 2014. a
Gerber, D., Swinyard, B. M., Ellison, B. N., Plane, J. M. C., Feng, W.,
Navarathinam, N., Eves, S. J., Bird, R., Linfield, E. H., Davies, A. G., and
Parkes, S.: LOCUS: Low cost upper atmosphere sounder, Proc. SPIE, 8889, 88891I, https://doi.org/10.1117/12.2028675, 2013. a
Gumbel, J., Megner, L., Christensen, O. M., Chang, S., Dillner, J., Ekebrand, T., Giono, G., Hammar, A., Hedin, J., Ivchenko, N., Karlsson, B., Kruse, M., Li, A., McCallion, S., Murtagh, D. P., Olentšenko, G., Pak, S., Park, W., Rouse, J., Stegman, J., and Witt, G.: The MATS Satellite Mission – Gravity Waves Studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1162, in review, 2018. a
Hagen, J., Murk, A., Rüfenacht, R., Khaykin, S., Hauchecorne, A., and Kämpfer, N.: WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements, Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, 2018. a
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E.,
Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.: Control of
equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, https://doi.org/10.1029/2006GL026161,
2006. a
Jacobi, C., Lilienthal, F., Geissler, C., and Krug, A.: Long-term variability
of mid-latitude mesosphere-lower thermosphere winds over Collm (51∘ N, 13∘ E),
J. Atmos. Sol.-Terr. Phy., 136, 174–186,
https://doi.org/10.1016/j.jastp.2015.05.006, 2015. a
Karlsson, B. and Becker, E.: How Does Interhemispheric Coupling Contribute to
Cool Down the Summer Polar Mesosphere?, J. Climate, 29, 8807–8821,
https://doi.org/10.1175/JCLI-D-16-0231.1, 2016. a
Kaufmann, M., Olschewski, F., Mantel, K., Solheim, B., Shepherd, G., Deiml, M., Liu, J., Song, R., Chen, Q., Wroblowski, O., Wei, D., Zhu, Y., Wagner, F., Loosen, F., Froehlich, D., Neubert, T., Rongen, H., Knieling, P., Toumpas, P., Shan, J., Tang, G., Koppmann, R., and Riese, M.: A highly miniaturized satellite payload based on a spatial heterodyne spectrometer for atmospheric temperature measurements in the mesosphere and lower thermosphere, Atmos. Meas. Tech., 11, 3861–3870, https://doi.org/10.5194/amt-11-3861-2018, 2018. a
Khosravi, M., Baron, P., Urban, J., Froidevaux, L., Jonsson, A. I., Kasai, Y., Kuribayashi, K., Mitsuda, C., Murtagh, D. P., Sagawa, H., Santee, M. L., Sato, T. O., Shiotani, M., Suzuki, M., von Clarmann, T., Walker, K. A., and Wang, S.: Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments, Atmos. Chem. Phys., 13, 7587–7606, https://doi.org/10.5194/acp-13-7587-2013, 2013. a
Kikuchi, K., Nishibori, T., Ochiai, S., Ozeki, H., Irimajiri, Y., Kasai, Y.,
Koike, M., Manabe, T., Mizukoshi, K., Murayama, Y., Nagahama, T., Sano, T.,
Sato, R., Seta, M., Takahashi, C., Takayanagi, M., Masuko, H., Inatani, J.,
Suzuki, M., and Shiotani, M.: Overview and early results of the
Superconducting Submillimeter-Wave Limb-Emission Sounder
(SMILES), J. Geophys. Res., 115, D23306,
https://doi.org/10.1029/2010JD014379, 2010. a
Larsson, R., Ramstad, R., Mendrok, J., Buehler, S. A., and Kasai, Y.: A method
for remote sensing of weak planetary magnetic fields: Simulated application
to Mars, Geophys. Res. Lett., 40, 5014–5018, https://doi.org/10.1002/grl.50964, 2013. a
Larsson, R., Lankhaar, B., and Eriksson, P.: Updated Zeeman effect splitting
coefficients for molecular oxygen in planetary applications, J. Quant. Spectrosc. Ra., 224, 431–438,
https://doi.org/10.1016/j.jqsrt.2018.12.004,
2019. a
Lenoir, W. B.: Microwave spectrum of molecular oxygen in the mesosphere,
J. Geophys. Res., 73, 361–376, https://doi.org/10.1029/JA073i001p00361,
1968. a, b
Mlynczak, M. G. and Yee, J. H.: LATTICE: The Lower
Atmosphere-Thermosphere-Ionosphere Coupling Experiment, AGU Fall Meeting
Abstracts, 1, 2017. a
Navas-Guzmán, F., Kämpfer, N., Murk, A., Larsson, R., Buehler, S. A., and Eriksson, P.: Zeeman effect in atmospheric O2 measured by ground-based microwave radiometry, Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, 2015. a
Niciejewski, R., Wu, Q., Skinner, W., Gell, D., Cooper, M., Marshall, A.,
Killeen, T., Solomon, S., and Ortland, D.: TIMED Doppler Interferometer
on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics
Satellite: Data product overview, J. Geophys. Res.-Space, 111, A11S90, https://doi.org/10.1029/2005JA011513,
2006. a
Ochiai, S., Kikuchi, K., Nishibori, T., Manabe, T., Ozeki, H., Mizobuchi, S.,
and Irimajiri, Y.: Receiver Performance of the Superconducting
Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space
Station, IEEE T. Geosci. Remote, 51, 3791–3802,
https://doi.org/10.1109/TGRS.2012.2227758, 2013. a
Ochiai, S., Baron, P., Nishibori, T., Irimajiri, Y., Uzawa, Y., Manabe, T.,
Maezawa, H., Mizuno, A., Nagahama, T., Sagawa, H., Suzuki, M., and Shiotani,
M.: SMILES-2 mission for temperature, wind, and composition in the whole
atmosphere, SOLA, 13A, 13–18, https://doi.org/10.2151/sola.13A-003, 2017. a, b, c, d
Ochiai, S., Baron, P., Irimajiri, Y., Uzawa, Y., Nishibori, T., Akinori, S.,
Suzuki, M., and Shiotani, M.: Superconducting Submillimeter-Wave
Limb-Emission Sounder, SMILES-2, for middle and upper atmospheric study,
IGARSS 2018–2018, IEEE T. Geosci. Remote, 9153–9156, https://doi.org/10.1109/IGARSS.2018.8518300, 2018. a
Ochiai, S., Baron, P., Irimajiri, Y., Nishibori, T., Hasegawa, T., Uzawa, Y.,
Maezawa, H., Manabe, T., Mizuno, A., Nagahama, T., Kimura, K., Suzuki, M.,
Saito, A., and Shiotani, M.: Conceptual study of Superconducting
Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2) receiver,
IGARSS 2019–2019, IEEE T. Geosci. Remote, 8792–8795, https://doi.org/10.1109/IGARSS.2019.8898693, 2019. a
Pancheva, D. and Mukhtarov, P.: Atmospheric Tides and Planetary Waves: Recent
Progress Based on SABER/TIMED Temperature Measurements (2002–2007), Springer Netherlands, Dordrecht, 19–56, https://doi.org/10.1007/978-94-007-0326-1_2, 2011. a
Pardo, J., Pagani, L., Gerin, M., and Prigent, C.: Evidence of the zeeman
splitting in the rotational transition of the atmospheric
16O18O molecule from ground-based measurements, J. Quant. Spectrosc. Ra., 54, 931–943,
https://doi.org/10.1016/0022-4073(95)00129-9, 1995. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practise,
2 of Series on Atmospheric, Oceanic and Planetary Physics, World
Scientific, 256 pp., https://doi.org/10.1142/3171, 2000. a
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon,
V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana,
V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart,
D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S.,
Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A.,
Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C.,
Rotger, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R.,
Vandaele, A., and Auwera, J. V.: The HITRAN 2008 molecular spectroscopic
database, J. Quant. Spectrosc. Ra., 110,
533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013,
2009. a
Rüfenacht, R., Murk, A., Kämpfer, N., Eriksson, P., and Buehler, S. A.: Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA, Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, 2014. a
Sakazaki, T., Fujiwara, M., Mitsuda, C., Imai, K., Manago, N., Naito, Y.,
Nakamura, T., Akiyoshi, H., Kinnison, D., Sano, T., Suzuki, M., and Shiotani,
M.: Diurnal ozone variations in the stratosphere revealed in observations
from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on
board the International Space Station (ISS), J. Geophys. Res.-Atmos., 118, 2991–3006, https://doi.org/10.1002/jgrd.50220,
2013. a
Sakazaki, T., Sato, K., Kawatani, Y., and Watanabe, S.: Three-dimensional
structures of tropical nonmigrating tides in a high-vertical-resolution
general circulation model, J. Geophys. Res.-Atmos., 120,
1759–1775, https://doi.org/10.1002/2014JD022464,
2015. a
Sato, K., Yasui, R., and Miyoshi, Y.: The Momentum Budget in the Stratosphere,
Mesosphere, and Lower Thermosphere, Part I: Contributions of Different Wave
Types and In Situ Generation of Rossby Waves, J. Atmos. Sci., 75, 3613–3633, https://doi.org/10.1175/JAS-D-17-0336.1, 2018. a
Schreier, F., Garcia, S. G., Hedelt, P., Hess, M., Mendrok, J., Vasquez, M.,
and Xu, J.: GARLIC – A general purpose atmospheric radiative transfer
line-by-line infrared-microwave code: Implementation and evaluation, J. Quant. Spectrosc. Ra., 137, 29–50,
https://doi.org/10.1016/j.jqsrt.2013.11.018, 2014. a, b
Semel, M. and López, A.: Integration of the radiative transfer equation for
polarized light: The exponential solution, A&A, 342, 201–211, 1999. a
Sheese, P. E., Llewellyn, E. J., Gattinger, R. L., Bourassa, A. E., Degenstein,
D. A., Lloyd, N. D., and McDade, I. C.: Temperatures in the upper mesosphere
and lower thermosphere from OSIRIS observations of O2 A-band emission
spectra, Can. J. Phys., 88, 919–925, https://doi.org/10.1139/p10-093, 2010. a
Shepherd, G. G.: Development of wind measurement systems for future space
missions, Acta Astronaut., 115, 206–217,
https://doi.org/10.1016/j.actaastro.2015.05.015, 2015. a
Shiotani, M., Saito, A., Sakazaki, T., Ochiai, S., Baron, P., Nishibori, T.,
Suzuki, M., Abe, T., Maezawa, H., and Oyama, S.: A proposal for satellite
observation of the whole atmosphere – Superconducting
Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2), IGARSS
2019–2019, IEEE T. Geosci. Remote, 8788–8791, https://doi.org/10.1109/IGARSS.2019.8898423, 2019. a, b
Sica, R. J., Izawa, M. R. M., Walker, K. A., Boone, C., Petelina, S. V., Argall, P. S., Bernath, P., Burns, G. B., Catoire, V., Collins, R. L., Daffer, W. H., De Clercq, C., Fan, Z. Y., Firanski, B. J., French, W. J. R., Gerard, P., Gerding, M., Granville, J., Innis, J. L., Keckhut, P., Kerzenmacher, T., Klekociuk, A. R., Kyrö, E., Lambert, J. C., Llewellyn, E. J., Manney, G. L., McDermid, I. S., Mizutani, K., Murayama, Y., Piccolo, C., Raspollini, P., Ridolfi, M., Robert, C., Steinbrecht, W., Strawbridge, K. B., Strong, K., Stübi, R., and Thurairajah, B.: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements, Atmos. Chem. Phys., 8, 35–62, https://doi.org/10.5194/acp-8-35-2008, 2008. a
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33,
1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012. a, b
Steinbrecht, W., McGee, T. J., Twigg, L. W., Claude, H., Schönenborn, F., Sumnicht, G. K., and Silbert, D.: Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE), Atmos. Meas. Tech., 2, 125–145, https://doi.org/10.5194/amt-2-125-2009, 2009. a
Steiner, O., Züger, F., and Belluzzi, L.: Polarized radiative transfer in
discontinuous media, A42, 586, 14 pp., https://doi.org/10.1051/0004-6361/201527158, 2016. a
Tsuda, T.: Characteristics of atmospheric gravity waves observed using the MU
(Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio
occultation, P. Jpn. Acad., 90, 12–27, 2014. a
Tsutsumi, M., Sato, K., Sato, T., Kohma, M., Nakamura, T., Nishimura, K., and
Tomikawa, Y.: Characteristics of Mesosphere Echoes over Antarctica Obtained
Using PANSY and MF Radars, SOLA, 13A, 19–23, https://doi.org/10.2151/sola.13A-004,
2017. a
Urban, J., Baron, P., Lautié, N., Schneider, N., Dassas, K., Ricaud, P., and
De La Noë, J.: MOLIERE (v5): a versatile forward- and inversion model for
the millimeter and sub-millimeter wavelength range, J. Quant. Spectrosc. Ra.
83, 529–554, https://doi.org/10.1016/S0022-4073(03)001040-3, 2004. a
Wang, W., Wang, Z., and Duan, Y.: Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China, Atmos. Meas. Tech., 13, 13–38, https://doi.org/10.5194/amt-13-13-2020, 2020. a
Wu, D. L., Schwartz, M. J., Waters, J. W., Limpasuvan, V., Wu, Q. A., and
Killeen, T. L.: Mesospheric doppler wind measurements from Aura Microwave
Limb Sounder (MLS), Adv. Space Res., 42, 1246–1252, 2008. a
Wu, D. L., Yee, J.-H., Schlecht, E., Mehdi, I., Siles, J., and Drouin, B. J.:
THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and
temperature, J. Geophys. Res.-Space, 121, 7301–7315,
https://doi.org/10.1002/2015JA022314, 2016. a
Xu, X., Manson, A. H., Meek, C. E., Chshyolkova, T., Drummond, J. R., Hall,
C. M., Riggin, D. M., and Hibbins, R. E.: Vertical and interhemispheric links
in the stratosphere-mesosphere as revealed by the day-to-day variability of
Aura-MLS temperature data, Ann. Geophys., 27, 3387–3409,
https://doi.org/10.5194/angeo-27-3387-2009, 2009. a
Yamazaki, Y. and Maute, A.: Sq and EEJ – A Review on the Daily Variation of the
Geomagnetic Field Caused by Ionospheric Dynamo Currents, Space Sci. Rev., 206, 299–405, https://doi.org/10.1007/s11214-016-0282-z, 2017.
a
Yi, W., Xue, X., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B., Li, G., Vincent, R. A., Chen, J., Wu, J., Chen, T., and Dou, X.: Climatology of the mesopause relative density using a global distribution of meteor radars, Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, 2019. a
Short summary
Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20–160 km). The key products are wind, temperature and density. If selected, this mission could provide new insights into vertical coupling in the atmosphere and could help improve weather and climate models. We conducted simulation studies to assess the measurement performances in the altitude range 60–110 km, with a special focus on the geomagnetic effects.
Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan...