Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Annmarie Eldering
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
David Crisp
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Aronne J. Merrelli
Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI, USA
Christopher W. O'Dell
Cooperative Institute for Research in the Atmosphere, Fort Collins, CO, USA
Related authors
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech., 18, 929–952, https://doi.org/10.5194/amt-18-929-2025, https://doi.org/10.5194/amt-18-929-2025, 2025
Short summary
Short summary
We find that small particles suspended in the air (aerosols) affect the satellite observations of carbon dioxide (CO2) made by the Orbiting Carbon Observatory-2 satellite instrument. Satellite estimates of CO2 appear to be too high for clean areas and too low for polluted areas. Our results show that CO2 and aerosols are often co-emitted, and this is partly masked out in the current retrievals. Correctly accounting for the aerosol effect is important for CO2 emission estimates by satellites.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
Short summary
Prior studies have derived the combustion efficiency for a region/city using observed CO2 and CO. We further zoomed into the urban domain and accounted for factors affecting the calculation of spatially resolved combustion efficiency from two satellites. The intra-city variability in combustion efficiency was linked to heavy industry within Shanghai and LA without relying on emission inventories. Such an approach can be applied when analyzing data from future geostationary satellites.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Peter Somkuti, Gregory McGarragh, Christopher O'Dell, Antonio Di Noia, Leif Vogel, Sean Crowell, Lesley E. Ott, and Hartmut Bösch
Atmos. Meas. Tech., 18, 4647–4663, https://doi.org/10.5194/amt-18-4647-2025, https://doi.org/10.5194/amt-18-4647-2025, 2025
Short summary
Short summary
In space-based estimates of atmospheric methane concentrations, one can often observe biases that look like imprints of surface features. We performed realistic simulation experiments and find the root cause to be unaccounted aerosols. Since good knowledge of aerosols is difficult to achieve for operational science data processing, we conclude that a comprehensive surface bias correction scheme is highly important for missions utilizing the 2.3 µm spectral band for methane retrievals.
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech., 18, 929–952, https://doi.org/10.5194/amt-18-929-2025, https://doi.org/10.5194/amt-18-929-2025, 2025
Short summary
Short summary
We find that small particles suspended in the air (aerosols) affect the satellite observations of carbon dioxide (CO2) made by the Orbiting Carbon Observatory-2 satellite instrument. Satellite estimates of CO2 appear to be too high for clean areas and too low for polluted areas. Our results show that CO2 and aerosols are often co-emitted, and this is partly masked out in the current retrievals. Correctly accounting for the aerosol effect is important for CO2 emission estimates by satellites.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024, https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Short summary
Carbon dioxide and methane are greenhouse gases that have been rapidly increasing due to human activity since the industrial revolution, leading to global warming and subsequently negative affects on the climate. It is important to measure the concentrations of these gases in order to make climate predictions that drive policy changes to mitigate climate change. GeoCarb aims to measure the concentrations of these gases from space over the Americas at unprecedented spatial and temporal scales.
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality-filtered data. We propose a nonlinear method that improves correction against a set of ground truth proxies and allows for high throughput of well-corrected data.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
Short summary
Prior studies have derived the combustion efficiency for a region/city using observed CO2 and CO. We further zoomed into the urban domain and accounted for factors affecting the calculation of spatially resolved combustion efficiency from two satellites. The intra-city variability in combustion efficiency was linked to heavy industry within Shanghai and LA without relying on emission inventories. Such an approach can be applied when analyzing data from future geostationary satellites.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
John R. Worden, Daniel H. Cusworth, Zhen Qu, Yi Yin, Yuzhong Zhang, A. Anthony Bloom, Shuang Ma, Brendan K. Byrne, Tia Scarpelli, Joannes D. Maasakkers, David Crisp, Riley Duren, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, https://doi.org/10.5194/acp-22-6811-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: 1) describe a new algorithm by which remotely sensed measurements of methane or other tracers can be used to not just quantify methane fluxes, but also attribute these fluxes to specific sources and regions and characterize their uncertainties, and 2) use this new algorithm to provide methane emissions by sector and country in support of the global stock take.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch
Atmos. Meas. Tech., 14, 7511–7524, https://doi.org/10.5194/amt-14-7511-2021, https://doi.org/10.5194/amt-14-7511-2021, 2021
Short summary
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, https://doi.org/10.5194/acp-21-8255-2021, 2021
Short summary
Short summary
Over oceans, high uncertainties in satellite CO2 retrievals exist due to limited reference data. We combine commercial ship and aircraft observations and, with the aid of model calculations, obtain column-averaged mixing ratios of CO2 (XCO2) data over the Pacific Ocean. This new dataset has great potential as a robust reference for XCO2 measured from space and can help to better understand changes in the carbon cycle in response to climate change using satellite observations.
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O'Dell, and David Crisp
Atmos. Meas. Tech., 14, 2141–2166, https://doi.org/10.5194/amt-14-2141-2021, https://doi.org/10.5194/amt-14-2141-2021, 2021
Short summary
Short summary
The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large parts of the world. We have used a small ensemble of satellite retrievals of column-averaged CO2 (XCO2) to find out if a regional-scale reduction of atmospheric CO2 can be detected from space. We focus on East China and show that it is challenging to reliably detect and to accurately quantify the emission reduction, which only results in regional XCO2 reductions of about 0.1–0.2 ppm.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Nicole Jacobs, William R. Simpson, Debra Wunch, Christopher W. O'Dell, Gregory B. Osterman, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Rigel Kivi, and Pauli Heikkinen
Atmos. Meas. Tech., 13, 5033–5063, https://doi.org/10.5194/amt-13-5033-2020, https://doi.org/10.5194/amt-13-5033-2020, 2020
Short summary
Short summary
The boreal forest is the largest seasonally varying biospheric CO2-exchange region on Earth. This region is also undergoing amplified climate warming, leading to concerns about the potential for altered regional carbon exchange. Satellite missions, such as the Orbiting Carbon Observatory-2 (OCO-2) project, can measure CO2 abundance over the boreal forest but need validation for the assurance of accuracy. Therefore, we carried out a ground-based validation of OCO-2 CO2 data at three locations.
Cited articles
Born, G. H., Dunne, J. A., and Lame, D. B.: Seasat mission overview, Science,
204, 1405–1406, https://doi.org/10.1126/science.204.4400.1405, 1979. a
Bourassa, M. A., Gille, S. T., Jackson, D. L., Roberts, J. B., and Wick, G. A.:
Ocean winds and turbulent air-sea fluxes inferred from remote sensing,
Oceanography, 23, 36–51, https://doi.org/10.5670/oceanog.2010.04, 2010. a
Bourassa, M. A., Meissner, T., Cerovecki, I., Chang, P. S., Dong, X., Chiara,
G. D., Donlon, C., Dukhovskoy, D. S., Elya, J., Fore, A., Fewings, M. R.,
Foster, R. C., Gille, S. T., Haus, B. K., Hristova-Veleva, S., Holbach,
H. M., Jelenak, Z., Knaff, J. A., Kranz, S. A., Manaster, A., Mazloff, M.,
Mears, C., Mouche, A., Portabella, M., Reul, N., Ricciardulli, L., Rodriguez,
E., Sampson, C., Solis, D., Stoffelen, A., Stukel, M. R., Stiles, B.,
Weissman, D., and Wentz, F.: Remotely sensed winds and wind stresses for
marine forecasting and ocean modeling, Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443, 2019. a, b
Bréon, F. and Henriot, N.: Spaceborne observations of ocean glint
reflectance and modeling of wave slope distributions, J. Geophys.
Res.-Oceans, 111, C06005, https://doi.org/10.1029/2005JC003343, 2006. a
Buil, C., Pascal, V., Loesel, J., Pierangelo, C., Roucayrol, L., and Tauziede,
L.: A new space instrumental concept for the measurement of CO2
concentration in the atmosphere, in: Sensors, Systems, and Next-Generation
Satellites XV, vol. 8176, 817621, International Society for Optics and
Photonics, https://doi.org/10.1117/12.897598, 2011. a
California Institute of Technology: RT Retrieval Framework,
available at: http://nasa.github.io/RtRetrievalFrameworkDoc/, last access: 7 May 2020. a
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from
Photographs of the Sun's Glitter, J. Opt. Soc. Am.,
44, 838–850, https://doi.org/10.1364/JOSA.44.000838, 1954. a, b, c, d
Crisp, D., Miller, C. E., and DeCola, P. L.: NASA Orbiting Carbon Observatory:
measuring the column averaged carbon dioxide mole fraction from space,
J. Appl. Remote Sens., 2, 023508, https://doi.org/10.1117/1.2898457, 2008. a
Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D. M., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO2 retrieval
algorithm – Part II: Global data characterization, Atmos. Meas. Tech., 5, 687–707,
https://doi.org/10.5194/amt-5-687-2012, 2012. a
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M.,
Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., Doran, G. B.,
Eldering, A., Fisher, B. M., Fu, D., Gunson, M. R., Mandrake, L., Osterman,
G. B., Schwandner, F. M., Sun, K., Taylor, T. E., Wennberg, P. O., and Wunch,
D.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2)
instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017. a
Draper, D. W., Newell, D. A., Wentz, F. J., Krimchansky, S., and
Skofronick-Jackson, G. M.: The global precipitation measurement (GPM)
microwave imager (GMI): Instrument overview and early on-orbit performance,
IEEE J. Sel. Top. Appl., 8, 3452–3462, https://doi.org/10.1109/JSTARS.2015.2403303, 2015. a
Durden, S. L. and Perkovic-Martin, D.: The RapidScat ocean winds scatterometer:
A radar system engineering perspective, IEEE Geosci. Remote S. Mag., 5, 36–43, https://doi.org/10.1109/MGRS.2017.2678999, 2017. a
Ebuchi, N.: Evaluation of wind speed globally observed by AMSR2 on GCOM-W1, in: 2014 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, 13–18 July 2014, Quebec City, QC, Canada, 3902–3905, https://doi.org/10.1109/IGARSS.2014.6947337, 2014. a, b
Ebuchi, N. and Kizu, S.: Probability distribution of surface wave slope derived
using sun glitter images from geostationary meteorological satellite and
surface vector winds from scatterometers, J. Oceanogr., 58,
477–486, https://doi.org/10.1023/A:1021213331788, 2002. a
Figa-Saldaña, J., Wilson, J. J., Attema, E., Gelsthorpe, R., Drinkwater,
M. R., and Stoffelen, A.: The advanced scatterometer (ASCAT) on the
meteorological operational (MetOp) platform: A follow on for European wind
scatterometers, Can. J. Remote Sens., 28, 404–412,
https://doi.org/10.5589/m02-035, 2002. a
Friedman, D.: Infrared characteristics of ocean water (1.5–15μ), Appl.
Optics, 8, 2073–2078, https://doi.org/10.1364/AO.8.002073, 1969. a
Haimbach, S. and Wu, J.: Field trials of an optical scanner for studying
sea-surface fine structures, IEEE J. Oceanic Engin., 10,
451–453, https://doi.org/10.1109/JOE.1985.1145129, 1985. a
Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to
200-µm wavelength region, Appl. Optics, 12, 555–563,
https://doi.org/10.1364/AO.12.000555, 1973. a
Hollinger, J. P., Peirce, J. L., and Poe, G. A.: SSM/I instrument evaluation,
IEEE T. Geosci. Remote, 28, 781–790,
https://doi.org/10.1109/36.58964, 1990. a
Hwang, P. A. and Shemdin, O. H.: The dependence of sea surface slope on
atmospheric stability and swell conditions, J. Geophys. Res.-Oceans, 93, 13903–13912, https://doi.org/10.1029/JC093iC11p13903, 1988. a
Imaoka, K., Kachi, M., Kasahara, M., Ito, N., Nakagawa, K., and Oki, T.:
Instrument performance and calibration of AMSR-E and AMSR2, International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38, 13–18, 2010. a
Kachi, M., Naoki, K., Hori, M., and Imaoka, K.: AMSR2 validation results, in:
2013 IEEE International Geoscience and Remote Sensing Symposium – IGARSS, 21–26 July 2013, Melbourne, VIC, Australia, IEEE, 831–834, https://doi.org/10.1109/IGARSS.2013.6721287, 2013. a, b
Kay, S., Hedley, J. D., and Lavender, S.: Sun glint correction of high and low
spatial resolution images of aquatic scenes: a review of methods for visible
and near-infrared wavelengths, Remote Sens., 1, 697–730,
https://doi.org/10.3390/rs1040697, 2009. a
L'Ecuyer, T. S. and Jiang, J. H.: Touring the atmosphere aboard the A-Train,
Phys. Today, 63, 36–41, https://doi.org/10.1063/1.3463626, 2010. a
Lillibridge, J., Scharroo, R., Abdalla, S., and Vandemark, D.: One-and
two-dimensional wind speed models for Ka-band altimetry, J.
Atmos. Ocean. Tech., 31, 630–638,
https://doi.org/10.1175/JTECH-D-13-00167.1, 2014. a
McLellan, H. J.: Elements of physical oceanography, Pergamon Press, Elmsford, New York, USA, 1965. a
Mears, C., Smith, D. K., and Wentz, F. J.: Comparison of special sensor
microwave imager and buoy-measured wind speeds from 1987 to 1997, J.
Geophys. Res.-Oceans, 106, 11719–11729,
https://doi.org/10.1029/1999JC000097, 2001. a
Meftah, M., Damé, L., Bolsée, D., Pereira, N., Sluse, D., Cessateur,
G., Irbah, A., Sarkissian, A., Djafer, D., Hauchecorne, A., and Bekki, S.: A
New Solar Spectrum from 656 to 3088 nm, Sol. Phys., 292, 101,
https://doi.org/10.1007/s11207-017-1115-2, 2017. a
Meissner, T. and Wentz, F. J.: The emissivity of the ocean surface between 6
and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE T. Geosci. Remote, 50, 3004–3026,
https://doi.org/10.1109/TGRS.2011.2179662, 2012. a, b
Monzon, C., Forester, D. W., Burkhart, R., and Bellemare, J.: Rough ocean
surface and sunglint region characteristics, Appl. Optics, 45, 7089–7096,
https://doi.org/10.1364/AO.45.007089, 2006. a
NASA: RtRetrievalFramework, GitHub, available at: https://github.com/nasa/RtRetrievalFramework, last access: 7 May 2020. a
Nuss, W. A., Bane, J. M., Thompson, W. T., Holt, T., Dorman, C. E., Ralph,
F. M., Rotunno, R., Klemp, J. B., Skamarock, W. C., Samelson, R. M.,
Rogerson, A. M., Reason, C., and Jackson, P.: Coastally trapped wind
reversals: Progress toward understanding, B. Am.
Meteorol. Soc., 81, 719–744,
https://doi.org/10.1175/1520-0477(2000)081<0719:CTWRPT>2.3.CO;2, 2000. a
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 geolocated XCO2 retrievals results, physical model, Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/6SBROTA57TFH, 2020. a
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO2
retrieval algorithm – Part 1: Description and validation against synthetic
observations, Atmos. Meas. Tech., 5, 99–121,
https://doi.org/10.5194/amt-5-99-2012, 2012. a
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018. a, b
Parashar, S., Langham, E., McNally, J., and Ahmed, S.: RADARSAT mission
requirements and concept, Can. J. Remote Sens., 19, 280–288,
https://doi.org/10.1080/07038992.1993.10874563, 1993. a
Parish, T. R., Rahn, D. A., and Leon, D. C.: Aircraft measurements and
numerical simulations of an expansion fan off the California coast, J.
Appl. Meteorol. Clim., 55, 2053–2062,
https://doi.org/10.1175/JAMC-D-16-0101.1, 2016. a
Rahn, D. A. and Garreaud, R. D.: A synoptic climatology of the near-surface
wind along the west coast of South America, Int. J. Climatol., 34, 780–792, https://doi.org/10.1002/joc.3724, 2014. a
Ricciardulli, L. and Wentz, F. J.: A scatterometer geophysical model function
for climate-quality winds: QuikSCAT Ku-2011, J. Atmos.
Ocean. Tech., 32, 1829–1846, https://doi.org/10.1175/JTECH-D-15-0008.1, 2015. a
Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R. D., Gelaro, R., Stajner, I., and Nielsen, J. E.: The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0, Tech. rep., NASA Goddard Space Flight Center, Greenbelt, MD, available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf (last access: 7 May 2020), 2008. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice,
World Scientific, Singapore, 2000. a
Rosenqvist, A., Shimada, M., Ito, N., and Watanabe, M.: ALOS PALSAR: A
pathfinder mission for global-scale monitoring of the environment, IEEE T. Geosci. Remote, 45, 3307–3316,
https://doi.org/10.1109/TGRS.2007.901027, 2007. a
Shaw, J. A. and Churnside, J. H.: Scanning-laser glint measurements of
sea-surface slope statistics, Appl. Optics, 36, 4202–4213,
https://doi.org/10.1364/AO.36.004202, 1997. a
Sierk, B., Bézy, J.-L., Löscher, A., and Meijer, Y.: The European
CO2 Monitoring Mission: observing anthropogenic greenhouse gas
emissions from space, in: International Conference on Space Optics – ICSO
2018, 12 July 2019, Chania, Greece, vol. 11180, 111800M, International Society for Optics and Photonics, https://doi.org/10.1117/12.2535941, 2019. a
Spencer, M. W., Wu, C., and Long, D. G.: Improved resolution backscatter
measurements with the SeaWinds pencil-beam scatterometer, IEEE T. Geosci. Remote, 38, 89–104, https://doi.org/10.1109/36.823904, 2000. a
Stull, R. B.: An introduction to boundary layer meteorology, vol. 1, Springer
Science and Business Media, Dordrecht, the Netherlands, 1988. a
Su, W., Charlock, T. P., and Rutledge, K.: Observations of reflectance
distribution around sunglint from a coastal ocean platform, Appl. Optics,
41, 7369–7383, https://doi.org/10.1364/AO.41.007369, 2002. a
Sverdrup, H., Johnson, M., and Fleming, R.: Chemistry of sea water, The oceans:
their physics, chemistry, and general biology, Prentice-Hall, New York City, USA, 165–227,
1942. a
Tatarskii, V. I.: Multi-Gaussian representation of the Cox–Munk distribution
for slopes of wind-driven waves, J. Atmos. Ocean. Tech., 20, 1697–1705, https://doi.org/10.1175/1520-0426(2003)020<1697:MROTCD>2.0.CO;2, 2003. a
Taylor, T. E., O'Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q., Savtchenko, A., Nelson, R. R., Rosenthal, E. J., Chang, A. Y., Fisher, B., Osterman, G. B., Pollock, R. H., Crisp, D., Eldering, A., and Gunson, M. R.: Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmos. Meas. Tech., 9, 973–989, https://doi.org/10.5194/amt-9-973-2016, 2016. a
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay,
D., Simon, P., and Mandel, H.: The solar spectral irradiance from 200 to 2400
nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA
missions, Sol. Phys., 214, 1–22, https://doi.org/10.1023/A:1024048429145, 2003. a
Wentz, F. J.: Cox and Munk's sea surface slope variance, J. Geophys.
Res., 81, 1607–1608, https://doi.org/10.1029/JC081i009p01607, 1976. a
Wentz, F. J.: A well-calibrated ocean algorithm for special sensor
microwave/imager, J. Geophys. Res.-Oceans, 102, 8703–8718,
https://doi.org/10.1029/96JC01751, 1997. a, b, c
Wentz, F. J.: A 17-yr climate record of environmental parameters derived from
the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, J. Climate, 28, 6882–6902, https://doi.org/10.1175/JCLI-D-15-0155.1, 2015. a
Wentz, F. J. and Draper, D.: On-orbit absolute calibration of the global
precipitation measurement microwave imager, J. Atmos.
Ocean. Tech., 33, 1393–1412, https://doi.org/10.1175/JTECH-D-15-0212.1, 2016. a
Wentz, F. J., Ricciardulli, L., Rodriguez, E., Stiles, B. W., Bourassa, M. A.,
Long, D. G., Hoffman, R. N., Stoffelen, A., Verhoef, A., O'Neill, L. W.,
Farrar, J. T., Vandemark, D., Fore, A. G., Hristova-Veleva, S. M., Turk,
F. J., Gaston, R., and Tyler, D.: Evaluating and extending the ocean wind
climate data record, IEEE J. Sel. Top Appl., 10, 2165–2185,
https://doi.org/10.1109/JSTARS.2016.2643641, 2017. a
Winant, C., Dorman, C., Friehe, C., and Beardsley, R.: The marine layer off
northern California: An example of supercritical channel flow, J. Atmos. Sci., 45, 3588–3605,
https://doi.org/10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2, 1988. a
Wu, J.: Sea-surface slope and equilibrium wind-wave spectra, Phys. Fluids, 15, 741–747, https://doi.org/10.1063/1.1693978, 1972. a
Wu, J.: Mean square slopes of the wind-disturbed water surface, their
magnitude, directionality, and composition, Radio Sci., 25, 37–48,
https://doi.org/10.1029/RS025i001p00037, 1990.
a
Zhang, H. and Wang, M.: Evaluation of sun glint models using MODIS
measurements, J. Quant. Spectrosc. Ra.,
111, 492–506, https://doi.org/10.1016/j.jqsrt.2009.10.001, 2010. a
Zieger, S., Vinoth, J., and Young, I.: Joint calibration of multiplatform
altimeter measurements of wind speed and wave height over the past 20 years,
J. Atmos. Ocean. Tech., 26, 2549–2564,
https://doi.org/10.1175/2009JTECHA1303.1, 2009. a
Short summary
Measurements of surface wind speed over oceans are scientifically useful. Here we show that the Orbiting Carbon Observatory-2 (OCO-2), originally designed to measure carbon dioxide using reflected sunlight, can also accurately and precisely measure wind speed. OCO-2's high spatial resolution means that it can observe close to coastlines and therefore be used to study coastal wind processes and inform related economic sectors.
Measurements of surface wind speed over oceans are scientifically useful. Here we show that the...