Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2065-2021
https://doi.org/10.5194/amt-14-2065-2021
Research article
 | 
16 Mar 2021
Research article |  | 16 Mar 2021

LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 1: Theoretical framework

Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo

Related authors

Operational wind plants increase planetary boundary layer height: An observational study
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-148,https://doi.org/10.5194/wes-2024-148, 2024
Preprint under review for WES
Short summary
Observations of wind farm wake recovery at an operating wind farm
Raghavendra Krishnamurthy, Rob Newsom, Colleen Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna M. Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-29,https://doi.org/10.5194/wes-2024-29, 2024
Revised manuscript accepted for WES
Short summary
Design, steady performance and wake characterization of a scaled wind turbine with pitch, torque and yaw actuation
Emmanouil M. Nanos, Carlo L. Bottasso, Filippo Campagnolo, Franz Mühle, Stefano Letizia, G. Valerio Iungo, and Mario A. Rotea
Wind Energ. Sci., 7, 1263–1287, https://doi.org/10.5194/wes-7-1263-2022,https://doi.org/10.5194/wes-7-1263-2022, 2022
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 2: Applications to lidar measurements of wind turbine wakes
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021,https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary
Optimal tuning of engineering wake models through lidar measurements
Lu Zhan, Stefano Letizia, and Giacomo Valerio Iungo
Wind Energ. Sci., 5, 1601–1622, https://doi.org/10.5194/wes-5-1601-2020,https://doi.org/10.5194/wes-5-1601-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024,https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee​​​​​​​ Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024,https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms, Energies, 6, 2338–2361, https://doi.org/10.3390/en6052338, 2013. a
Achtemeier, G. L.: The Impact of Data Boundaries upon a Successive Corrections Objective Analysis of Limited-Area Datasets, Mon. Weather Rev., 114, 40–49, https://doi.org/10.1175/1520-0493(1986)114<0040:TIODBU>2.0.CO;2, 1986. a
Achtemeier, G. L.: Modification of a Successive Corrections Objective Analysis for Improved Derivative Calculations, Mon. Weather Rev., 117, 78–86, https://doi.org/10.1175/1520-0493(1989)117<0078:MOASCO>2.0.CO;2, 1989. a
Aitken, M. L. and Lundquist, J. K.: Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar, J. Atmos. Ocean. Tech., 31, 1529–1539, https://doi.org/10.1175/JTECH-D-13-00218.1, 2014. a, b, c, d
Arenas, I., García, E., Fu, M. K., Orlandi, P., Hultmark, M., and Leonardi, S.: Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study, J. Fluid Mech., 869, 500–525, https://doi.org/10.1017/jfm.2019.222, 2019. a
Short summary
A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of velocity statistics is proposed. The LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. The optimal design of lidar scans is formulated as a two-cost-function optimization problem, including the minimization of the volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field.