Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2529-2021
https://doi.org/10.5194/amt-14-2529-2021
Research article
 | 
31 Mar 2021
Research article |  | 31 Mar 2021

A new global grid-based weighted mean temperature model considering vertical nonlinear variation

Peng Sun, Suqin Wu, Kefei Zhang, Moufeng Wan, and Ren Wang

Related authors

A New Reduction Model for Enhancing the Interpolation Accuracy of VMF1/VMF3 Tropospheric Products in GNSS Applications
Peng Sun, Kefei Zhang, Dantong Zhu, Dongsheng Zhao, Shuangshuang Shi, Xuexi Liu, Minghao Zhang, and Suqin Wu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-123,https://doi.org/10.5194/gmd-2024-123, 2024
Revised manuscript under review for GMD
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Askne, J. and Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22, 379–386, https://doi.org/10.1029/RS022i003p00379, 1987. 
Bennitt, G. V. and Jupp, A.: Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models, Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1, 2012. 
Bevis, M.: GPS meteorology: mapping zenith wet delays onto precipitable water, J. Appl. Meteorol., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2, 1994. 
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 787–801, https://doi.org/10.1029/92jd01517, 1992. 
Bianchi, C. E., Mendoza, L. P. O., Fernández, L. I., Natali, M. P., Meza, A. M., and Moirano, J. F.: Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., 34, 623–639, https://doi.org/10.5194/angeo-34-623-2016, 2016. 
Download
Short summary
In GPS or Global navigation satellite systems (GNSS) meteorology, precipitable water vapor (PWV) at a station is obtained from a conversion of the GNSS signal zenith wet delay (ZWD) using a conversion factor which is a function of weighted mean temperature (Tm) over the site. We developed a new global grid-based empirical Tm model using ERA5 reanalysis data. The model-predicted Tm value has significance for applications needing real-time or near real-time PWV converted from GNSS signals.