Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-14-3277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part II: Results over oceans
Anne Garnier
CORRESPONDING AUTHOR
Science Systems and Applications, Inc., Hampton, VA 23666, USA
Jacques Pelon
Laboratoire Atmosphères, Milieux, Observations Spatiales, Sorbonne
University, Paris, 75252, France
Nicolas Pascal
AERIS/ICARE Data and Services Center, Villeneuve-d'Ascq, 59650, France
Mark A. Vaughan
NASA Langley Research Center, Hampton, VA 23681, USA
Philippe Dubuisson
Laboratoire d'Optique Atmosphérique, Université de Lille,
Villeneuve-d'Ascq, 59655, France
Ping Yang
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX 77843, USA
David L. Mitchell
Desert Research Institute, Reno, NV 89512, USA
Related authors
Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2832, https://doi.org/10.5194/egusphere-2025-2832, 2025
Short summary
Short summary
NASA’s CALIPSO satellite mission observed aerosols (airborne particles) globally from 2006 to 2023. Its final data products update improves its aerosol optical parameters over oceans by adjusting for regional and seasonal differences in a new measurement-model synergistic approach. This results in a more realistic aerosol characterization, specifically near coastlines (where sea salt mixes with pollution), with potential impacts to future studies of science applications (e.g., climate effects).
Jason L. Tackett, Robert A. Ryan, Anne E. Garnier, Jayanta Kar, Brian J. Getzewich, Xia Cai, Mark A. Vaughan, Charles R. Trepte, Ron C. Verhappen, David M. Winker, and Kam-Pui A. Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-2376, https://doi.org/10.5194/egusphere-2025-2376, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The spaceborne atmospheric lidar CALIOP experienced an increasing number of intermittent low energy laser pulses in the final seven years of the 17-year long CALIPSO mission. Low energy pulses degraded the quality of retrievals in affected profiles. This paper describes low energy mitigation (LEM) algorithms that remove affected data and minimize data loss. LEM is demonstrated to correct calibration biases, reduce false feature detections, and restore the integrity of the CALIOP data record.
David L. Mitchell, Anne Emilie Garnier, and Sarah Woods
EGUsphere, https://doi.org/10.5194/egusphere-2024-3790, https://doi.org/10.5194/egusphere-2024-3790, 2024
Short summary
Short summary
Motivated by the need to better understand the physics of cirrus clouds, a satellite retrieval for cirrus cloud ice water content, ice particle number concentration and effective size was developed by exploiting relationships between cirrus cloud measurements made during field campaigns and cloud radiative properties measured by satellite. These retrievals tested favorably when compared against corresponding aircraft measurements and were found to depend on the visual opacity of the cloud.
David L. Mitchell and Anne Garnier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3814, https://doi.org/10.5194/egusphere-2024-3814, 2024
Short summary
Short summary
Arguably the greatest knowledge gap in cirrus cloud research is the relative roles of homogeneous and heterogeneous ice nucleation in cirrus cloud formation. Since this depends on temperature, latitude, season, and topography, a satellite remote sensing method was developed to measure cirrus cloud properties. It was found that cirrus clouds strongly affected by homogeneous ice nucleation may account for over half of the overall cirrus cloud radiative effect during winter outside the tropics.
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855, https://doi.org/10.5194/essd-16-2831-2024, https://doi.org/10.5194/essd-16-2831-2024, 2024
Short summary
Short summary
Clouds play important roles in both weather and climate. In this paper we describe version 1.0 of a unique global ice cloud data product derived from over 12 years of global spaceborne lidar measurements. This monthly gridded product provides a unique vertically resolved characterization of the occurrence and properties, optical and physical, of thin ice clouds and the tops of deep convective clouds. It should provide significant value for cloud research and model evaluation.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
David L. Mitchell, John Mejia, Anne Garnier, Yuta Tomii, Martina Krämer, and Farnaz Hosseinpour
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-846, https://doi.org/10.5194/acp-2020-846, 2020
Publication in ACP not foreseen
Short summary
Short summary
This may be the first estimate of the radiative contribution of homogeneous ice nucleation in cirrus clouds on a global, regional and seasonal scale. This is achieved by constraining an atmospheric global climate model with measured cirrus cloud properties via satellite remote sensing. The results show that the overall radiative warming contributed by homogeneous ice nucleation at the top of the atmosphere is 2.4 W m-2 outside the ± 30° latitude zone during non-summer months (JJA).
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.
Jayanta Kar, Mark A. Vaughan, Robert P. Damadeo, Mahesh Kovilakam, Jason L. Tackett, and Charles R. Trepte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3141, https://doi.org/10.5194/egusphere-2025-3141, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper assesses a possible bias in calibration of the spaceborne CALIOP lidar signals at 1064 nm resulting from relative attenuation of the signals at 1064 nm and 532 nm due to stratospheric aerosols. Multi-channel aerosol measurements from SAGE III instrument on ISS indicate that the bias is less than 1–2 % for background conditions and up to 5 % for strong stratospheric loading. Implications for extinction retrievals at 1064 nm and cascading errors for multi-layer scenes are discussed.
Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2832, https://doi.org/10.5194/egusphere-2025-2832, 2025
Short summary
Short summary
NASA’s CALIPSO satellite mission observed aerosols (airborne particles) globally from 2006 to 2023. Its final data products update improves its aerosol optical parameters over oceans by adjusting for regional and seasonal differences in a new measurement-model synergistic approach. This results in a more realistic aerosol characterization, specifically near coastlines (where sea salt mixes with pollution), with potential impacts to future studies of science applications (e.g., climate effects).
Jason L. Tackett, Robert A. Ryan, Anne E. Garnier, Jayanta Kar, Brian J. Getzewich, Xia Cai, Mark A. Vaughan, Charles R. Trepte, Ron C. Verhappen, David M. Winker, and Kam-Pui A. Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-2376, https://doi.org/10.5194/egusphere-2025-2376, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The spaceborne atmospheric lidar CALIOP experienced an increasing number of intermittent low energy laser pulses in the final seven years of the 17-year long CALIPSO mission. Low energy pulses degraded the quality of retrievals in affected profiles. This paper describes low energy mitigation (LEM) algorithms that remove affected data and minimize data loss. LEM is demonstrated to correct calibration biases, reduce false feature detections, and restore the integrity of the CALIOP data record.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Anthony La Luna, Zhibo Zhang, Jianyu Zheng, Qianqian Song, Hongbin Yu, Jiachen Ding, Ping Yang, and Masanori Saito
EGUsphere, https://doi.org/10.5194/egusphere-2025-1117, https://doi.org/10.5194/egusphere-2025-1117, 2025
Short summary
Short summary
The lidar backscattering properties of Asian dust particles were studied using a discrete dipole approximation (DDA) model. Both the lidar ratio (LR) and depolarization ratio (DPR) exhibit an asymptotic trend with dust particle size. Two parameterization schemes were developed: one to estimate the DPR of a single dust particle given its size, and the other to estimate the DPR of dust particles with a lognormal particle size distribution given the effective radius.
Ehsan Erfani and David L. Mitchell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1165, https://doi.org/10.5194/egusphere-2025-1165, 2025
Short summary
Short summary
Cirrus clouds play a key role in Earth’s climate by trapping heat. We use satellite data and radiative transfer modeling to explore how thinning these clouds could help cool the planet. It is shown that thinning cirrus clouds could significantly reduce warming, with the strongest effects in the polar regions during winter. These results improve our understanding of how clouds influence climate and could guide future efforts to combat global warming via climate intervention.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
David L. Mitchell, Anne Emilie Garnier, and Sarah Woods
EGUsphere, https://doi.org/10.5194/egusphere-2024-3790, https://doi.org/10.5194/egusphere-2024-3790, 2024
Short summary
Short summary
Motivated by the need to better understand the physics of cirrus clouds, a satellite retrieval for cirrus cloud ice water content, ice particle number concentration and effective size was developed by exploiting relationships between cirrus cloud measurements made during field campaigns and cloud radiative properties measured by satellite. These retrievals tested favorably when compared against corresponding aircraft measurements and were found to depend on the visual opacity of the cloud.
David L. Mitchell and Anne Garnier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3814, https://doi.org/10.5194/egusphere-2024-3814, 2024
Short summary
Short summary
Arguably the greatest knowledge gap in cirrus cloud research is the relative roles of homogeneous and heterogeneous ice nucleation in cirrus cloud formation. Since this depends on temperature, latitude, season, and topography, a satellite remote sensing method was developed to measure cirrus cloud properties. It was found that cirrus clouds strongly affected by homogeneous ice nucleation may account for over half of the overall cirrus cloud radiative effect during winter outside the tropics.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024, https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
Short summary
We introduce Ocean Derived Column Optical Depth (ODCOD), a new way to estimate column optical depths using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a complement measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established data sets in the daytime but tends to estimate higher at night.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855, https://doi.org/10.5194/essd-16-2831-2024, https://doi.org/10.5194/essd-16-2831-2024, 2024
Short summary
Short summary
Clouds play important roles in both weather and climate. In this paper we describe version 1.0 of a unique global ice cloud data product derived from over 12 years of global spaceborne lidar measurements. This monthly gridded product provides a unique vertically resolved characterization of the occurrence and properties, optical and physical, of thin ice clouds and the tops of deep convective clouds. It should provide significant value for cloud research and model evaluation.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Meryl Wimmer, Gwendal Rivière, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 3, 863–882, https://doi.org/10.5194/wcd-3-863-2022, https://doi.org/10.5194/wcd-3-863-2022, 2022
Short summary
Short summary
The effect of deep convection representation on the jet stream above the cold front of an extratropical cyclone is investigated in the global numerical weather prediction model ARPEGE. Two simulations using different deep convection schemes are compared with (re)analysis datasets and NAWDEX airborne observations. A deeper jet stream is observed with the less active scheme. The diabatic origin of this difference is interpreted by backward Lagrangian trajectories and potential vorticity budgets.
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Lilian Loyer, Jean-Christophe Raut, Claudia Di Biagio, Julia Maillard, Vincent Mariage, and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-326, https://doi.org/10.5194/amt-2021-326, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is facing drastic climate changes, and more observations are needed to better understand what is happening. Unfortunately observations are limited in the High Arctic. To obtain more observations, multiples buoys equipped with lidar, have been deployed in this region. This paper presents an approach to estimate the optical properties of clouds, and solar plus terrestrial energies from lidar measurements in the Arctic.
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031, https://doi.org/10.5194/wcd-2-1011-2021, https://doi.org/10.5194/wcd-2-1011-2021, 2021
Short summary
Short summary
Inacurracies in representing processes occurring at spatial scales smaller than the grid scales of the weather forecast models are important sources of forecast errors. This is the case of deep convection representation in models with 10 km grid spacing. We performed simulations of a real extratropical cyclone using a model with different representations of deep convection. These forecasts lead to different behaviors in the ascending air masses of the cyclone and the jet stream aloft.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253, https://doi.org/10.5194/wcd-2-233-2021, https://doi.org/10.5194/wcd-2-233-2021, 2021
Short summary
Short summary
The representation of an extratropical cyclone in simulations of two climate models is studied by comparing them to observations of the international field campaign NAWDEX. We show that the current resolution used to run climate model projections (more than 100 km) is not enough to represent the life cycle accurately, but the use of 50 km resolution is good enough. Despite these encouraging results, cloud properties (partitioning liquid and solid) are found to be far from the observations.
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Setigui Aboubacar Keita, Eric Girard, Jean-Christophe Raut, Maud Leriche, Jean-Pierre Blanchet, Jacques Pelon, Tatsuo Onishi, and Ana Cirisan
Geosci. Model Dev., 13, 5737–5755, https://doi.org/10.5194/gmd-13-5737-2020, https://doi.org/10.5194/gmd-13-5737-2020, 2020
David L. Mitchell, John Mejia, Anne Garnier, Yuta Tomii, Martina Krämer, and Farnaz Hosseinpour
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-846, https://doi.org/10.5194/acp-2020-846, 2020
Publication in ACP not foreseen
Short summary
Short summary
This may be the first estimate of the radiative contribution of homogeneous ice nucleation in cirrus clouds on a global, regional and seasonal scale. This is achieved by constraining an atmospheric global climate model with measured cirrus cloud properties via satellite remote sensing. The results show that the overall radiative warming contributed by homogeneous ice nucleation at the top of the atmosphere is 2.4 W m-2 outside the ± 30° latitude zone during non-summer months (JJA).
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.
Cited articles
AERIS/ICARE: Homepage, available at: http://www.icare.univ-lille.fr, last access: 22 April 2021.
Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles, Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, 2020.
Berry, E. and Mace, G. G.: Cloud properties and radiative effects of the
Asian summer monsoon derived from A-Train data, J. Geophys. Res.-Atmos.,
119, 9492–9508, https://doi.org/10.1002/2014JD021458, 2014.
Bi, L. and Yang, P.: Improved ice particle optical property simulations in
the ultraviolet to far-infrared regime, J. Quant. Spectrosc. Radiat.
Transfer, 189, 228–237, https://doi.org/10.1016/j.jqsrt.2016.12.007, 2017.
Chen, B., Huang, J., Minnis, P., Hu, Y., Yi, Y., Liu, Z., Zhang, D., and Wang, X.: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements, Atmos. Chem. Phys., 10, 4241–4251, https://doi.org/10.5194/acp-10-4241-2010, 2010.
Cooper, S. J. and Garrett, T. J.: Identification of small ice cloud
particles using passive radiometric observations, J. Appl. Meteor.
Climatol., 49, 2334–2347, https://doi.org/10.1175/2010JAMC2466.1, 2010.
Cooper, S. J. and Garrett, T. J.: Application of infrared remote sensing to constrain in-situ estimates of ice crystal particle size during SPartICus, Atmos. Meas. Tech., 4, 1593–1602, https://doi.org/10.5194/amt-4-1593-2011, 2011.
Cooper, S. J., L'Ecuyer, T. S., and Stephens, G. L.: The impact of explicit
cloud boundary information on ice cloud microphysical property retrievals
from infrared radiances, J. Geophys. Res., 108, 4107,
https://doi.org/10.1029/2002JD002611, 2003.
Deng, M., Mace, G. G., Wang, Z., and Berry, E.: CloudSat 2C-ICE product
update with a new Ze parameterization in lidar-only region, J. Geophys. Res.-Atmos., 120, 12198–12208, https://doi.org/10.1002/2015JD023600, 2015.
Di Noia, A., Hasekamp, O. P., van Diedenhoven, B., and Zhang, Z.: Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach, Atmos. Meas. Tech., 12, 1697–1716, https://doi.org/10.5194/amt-12-1697-2019, 2019.
Dolinar, E. K., Dong, X., Xi, B., Jiang, J. H., Loeb, N. G., Campbell, J.
R., and Su, H.: A global record of single-layered ice cloud properties and
associated radiative heating rate profiles from an A-Train perspective,
Clim. Dynam., 53, 3069–3088, https://doi.org/10.1007/s00382-019-04682-8,
2019.
Dubuisson, P., Giraud V., Chomette, O., Chepfer, H., and Pelon, J.: Fast
radiative transfer modeling for infrared imaging radiometry, J. Quant.
Spectrosc. Radiat. Transfer, 95, 201–220,
https://doi.org/10.1016/j.jqsrt.2004.09.034, 2005.
Dubuisson, P., Pelon, J., Cadet, B., and Yang, P.: Sensitivity of thermal
infrared radiation at the top of the atmosphere and the surface to ice cloud
microphysics, J. Appl. Meteor. Climatol., 47, 2545–2560, 2008.
Fauchez, T., Dubuisson, P., Cornet, C., Szczap, F., Garnier, A., Pelon, J., and Meyer, K.: Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry, Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015, 2015.
Fauchez, T., Platnick, S., Sourdeval, O., Wang, C., Meyer, K., Cornet, C.,
and Szczap, F.: Cirrus horizontal heterogeneity and 3-D radiative effects on
cloud optical property retrievals from MODIS near to thermal infrared
channels as a function of spatial resolution, J. Geophys. Res.-Atmos., 123,
11141–11153, https://doi.org/10.1029/2018JD028726, 2018.
Foot, J. S.: Some observations of the optical properties of clouds. Part II:
Cirrus, Q. J. Roy. Meteor. Soc, 114, 145–164, https://doi.org/10.1002/qj.49711447908, 1988.
Garnier A., Pelon, J., Dubuisson, P., Faivre, M., Chomette, O., Pascal, N.,
and Kratz, D. P.: Retrieval of cloud properties using CALIPSO Imaging
Infrared Radiometer: Part I: effective emissivity and optical depth, J.
Appl. Meteor. Climatol., 51, 1407–1425,
https://doi.org/10.1175/JAMC-D-11-0220.1, 2012.
Garnier, A., Pelon, J., Dubuisson, P., Yang, P., Faivre, M., Chomette, O.,
Pascal, N., Lucker, P., and Murray, T.: Retrieval of cloud properties using
CALIPSO Imaging Infrared Radiometer: Part II: effective diameter and ice
water path, J. Appl. Meteor. Climatol., 52, 2582–2599,
https://doi.org/10.1175/JAMC-D-12-0328.1, 2013.
Garnier, A., Pelon, J., Vaughan, M. A., Winker, D. M., Trepte, C. R., and Dubuisson, P.: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans, Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, 2015.
Garnier, A., Trémas, T., Pelon, J., Lee, K.-P., Nobileau, D., Gross-Colzy, L., Pascal, N., Ferrage, P., and Scott, N. A.: CALIPSO IIR Version 2 Level 1b calibrated radiances: analysis and reduction of residual biases in the Northern Hemisphere, Atmos. Meas. Tech., 11, 2485–2500, https://doi.org/10.5194/amt-11-2485-2018, 2018.
Garnier, A., Pelon, J., Pascal, N., Vaughan, M. A., Dubuisson, P., Yang, P., and Mitchell, D. L.: Version 4 CALIPSO Imaging Infrared
Radiometer ice and liquid water cloud microphysical properties –
Part I: The retrieval algorithms, Atmos. Meas. Tech., 14, 3253–3276,
https://doi.org/10.5194/amt-14-3253-2021, 2021.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giraud, V., Thouron, O., Reidi, J., and Goloub, P.: Analysis of direct
comparison of cloud top temperature and infrared split window signature
against independent retrievals of cloud thermodynamic phase, Geophys. Res.
Lett., 28, 983–986, 2001.
Guignard, A., Stubenrauch, C. J., Baran, A. J., and Armante, R.: Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO, Atmos. Chem. Phys., 12, 503–525, https://doi.org/10.5194/acp-12-503-2012, 2012.
Heidinger, A. K. and Pavolonis, M. J.: Gazing at cirrus clouds for 25 years
through a split window. Part I: methodology, J. Appl. Meteor. Climatol., 48,
1100–1116, https://doi.org/10.1175/2008JAMC1882.1, 2009.
Heidinger, A. K., Li, Y., Baum, B. A., Holz, R. E., Platnick, S., and Yang,
P.: Retrieval of cirrus cloud optical depth under day and night conditions
from MODIS Collection 6 Cloud Property Data, Remote Sens., 7, 7257–7271,
2015.
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., Nagle, F., and Wang, C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, 2016.
Hong, Y. and Liu, G.: The characteristics of ice cloud properties derived
from CloudSat and CALIPSO measurements, J. Climate, 28, 3880–3901,
https://doi.org/10.1175/JCLI-D-14-00666.1, 2015.
Inoue, T.: On the temperature and effective emissivity determination of
semitransparent cirrus clouds by bi-spectral measurements in the 10-µm
window region, J. Meteor. Soc. Japan, 63, 88–98, 1985.
Iwabuchi H. and Yang, P.: Temperature dependence of ice optical constants:
Implications for simulating the single-scattering properties of cold ice
clouds, J. Quant. Spectrosc. Radiat. Transfer, 112, 2520–2525,
https://doi.org/10.1016/j.jqsrt.2011.06.017, 2011.
Iwabuchi, H., Yamada, S., Katagiri, S., Yang, P., and Okamoto, H.: Radiative
and microphysical properties of cirrus cloud inferred from infrared
measurements made by the Moderate Resolution Imaging Spectroradiometer
(MODIS). Part I: retrieval method., J. Appl. Meteor. Climatol., 53,
1297–1316, https://doi.org/10.1175/JAMC-D-13-0215.1, 2014.
Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud, C. M., Blaisdell, J. M., Schreier, M. M., Yue, Q., Bowman, K. W., Fetzer, E. J., Hulley, G. C., Liou, K. N., Lubin, D., Ou, S. C., Susskind, J., Takano, Y., Tian, B., and Worden, J. R.: The Atmospheric Infrared Sounder version 6 cloud products, Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, 2014.
Kahn, B. H., Schreier, M. M., Yue, Q., Fetzer, E. J., Irion, F. W.,
Platnick, S., Wang, C., Nasiri, S. L., and L'Ecuyer, T. S.: Pixel-scale
assessment and uncertainty analysis of AIRS and MODIS ice cloud optical
thickness and effective radius, J. Geophys. Res.-Atmos., 120,
11669–11689, https://doi.org/10.1002/2015JD023950, 2015.
Kahn, B. H., Takahashi, H., Stephens, G. L., Yue, Q., Delanoë, J., Manipon, G., Manning, E. M., and Heymsfield, A. J.: Ice cloud microphysical trends observed by the Atmospheric Infrared Sounder, Atmos. Chem. Phys., 18, 10715–10739, https://doi.org/10.5194/acp-18-10715-2018, 2018.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E.,
Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M.,
Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger,
P., Quaas, J., and Sourdeval, O.: A Microphysics guide to cirrus – Part II:
climatologies of clouds and humidity from observations, Atmos. Chem. Phys.
Discuss., https://doi.org/10.5194/acp-2020-40, 2020.
Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher,
M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A.,
Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S.,
Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., and Krämer, M.: A
review of ice particle shapes in cirrus formed in situ and in anvils, J.
Geophys. Res.-Atmos., 124, 10049–10090,
https://doi.org/10.1029/2018JD030122, 2019.
Liu, C., Yang, P., Minnis, P., Loeb, N., Kato, S., Heymsfield, A., and Schmitt, C.: A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719–13737, https://doi.org/10.5194/acp-14-13719-2014, 2014.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019.
Loeb, N. G., Yang, P., Rose, F. G., Hong, G., Sun-Mack, S., Minnis, P.,
Kato, S., Ham, S.-H., Smith Jr., W. L., Hioki, S., and Tang, G.: Impact of
ice cloud microphysics on satellite cloud retrievals and broadband flux
radiative transfer model calculations. J. Climate, 31, 1851–1864,
https://doi.org/10.1175/JCLI-D-17-0426.1, 2018.
Marke, T., Ebell, K., Löhnert, U., and Turner, D. D.: Statistical
retrieval of thin liquid cloud microphysical properties using ground-based
infrared and microwave observations, J. Geophys. Res.-Atmos., 121,
14558–14573, https://doi.org/10.1002/2016JD025667, 2016.
Mitchell, D. L.: Effective diameter in radiation
transfer: General definition, applications, and limitations, J. Atmos. Sci., 59,
2330–2346, 2002.
Mitchell, D. L. and d'Entremont, R. P.: Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 ∘C, Atmos. Meas. Tech., 5, 1683–1698, https://doi.org/10.5194/amt-5-1683-2012, 2012.
Mitchell, D. L., d'Entremont, R. P., and Lawson, R. P.: Inferring cirrus
size distributions through satellite remote sensing and microphysical
databases, J. Atmos. Sci., 67, 1106–1125,
https://doi.org/10.1175/2009jas3150.1, 2010.
Mitchell, D. L., Garnier, A., Pelon, J., and Erfani, E.: CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations, Atmos. Chem. Phys., 18, 17325–17354, https://doi.org/10.5194/acp-18-17325-2018, 2018.
Mitchell, D. L., Mejia, J., Garnier, A., Tomii, Y., Krämer, M., and Hosseinpour, F.: An Estimate of Global, Regional and Seasonal Cirrus Cloud Radiative Effects Contributed by Homogeneous Ice Nucleation, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-846, in review, 2020.
Nakajima, T. and King, M. D: Determination of the optical thickness and
effective particle radius of clouds from reflected solar radiation
measurements. Part I: theory, J. Atmos. Sci., 47, 1878–1893, 1990.
NASA: CALIPSO Imaging Infrared Radiometer (IIR) Level 2 Track data, Beta V3-01, NASA Langley Research Center Atmospheric Science Data Center [data set], https://doi.org/10.5067/IIR/CALIPSO/L2_Track-Beta-V3-01, 2011.
NASA: CALIPSO Infrared Imaging Radiometer (IIR) Level 2 Track, V4-20, NASA Langley Research Center Atmospheric Science Data Center [data set], https://doi.org/10.5067/CALIOP/CALIPSO/CAL_IIR_L2_Track-Standard-V4-20, 2020
Parol, F., Buriez, J. C., Brogniez, G., and Fouquart, Y.: Information
content of AVHRR channels 4 and 5 with respect to the effective radius of
cirrus cloud particles, J. Appl. Meteor., 30, 973–984, 1991.
Pavolonis, M.: Advances in extraction cloud composition information from
spaceborne infrared radiances-A robust alternative to brightness
temperatures. Part I: theory, J. Appl. Meteor. Climatol., 49, 1992–2012,
https://doi.org/10.1175/2010JAMC2433.1, 2010.
Platnick, S.: Vertical photon transport in cloud remote sensing problems, J.
Geophys. Res., 105, 22919–22935, 2000.
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P.,
Ridgway, W. L., and Riedi, J.: The MODIS cloud optical and microphysical
products: Collection 6 updates and examples from Terra and Aqua, IEEE
Transactions on Geoscience and Remote Sensing, 55, 502–525,
https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Platt, C. M. R., Vaughan, M. A., and Austin, R. T.: Characteristics of
CALIPSO and CloudSat backscatter at the top center layers of mesoscale
convective systems and relation to cloud microphysics, J. Appl. Meteor.
Climatol., 50, 368–378, https://doi.org/10.1175/2010JAMC2537.1, 2011.
Protopapadaki, S. E., Stubenrauch, C. J., and Feofilov, A. G.: Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics, Atmos. Chem. Phys., 17, 3845–3859, https://doi.org/10.5194/acp-17-3845-2017, 2017.
Rathke, C. and Fischer, J.: Retrieval of cloud microphysical properties
from thermal infrared observations by a fast iterative radiance fitting
method, J. Atmos. Oceanic Technol., 17, 1509–1524,
https://doi.org/10.1175/1520-0426(2000)017<1509:ROCMPF>2.0.CO;2, 2000.
Rowe, P. M., Neshyba, S., and Walden, V. P.: Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds, Atmos. Chem. Phys., 13, 11925–11933, https://doi.org/10.5194/acp-13-11925-2013, 2013.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L.,Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao,
G.: Assessment of global cloud datasets from satellites: project and
database initiated by the GEWEX radiation panel, B. Am. Meteorol. Soc.,
94, 1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1, 2013.
Stubenrauch, C. J., Feofilov, A. G., Protopapadaki, S. E., and Armante, R.: Cloud climatologies from the infrared sounders AIRS and IASI: strengths and applications, Atmos. Chem. Phys., 17, 13625–13644, https://doi.org/10.5194/acp-17-13625-2017, 2017.
Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard, J. C.,
Cady-Pereira, K., Chiu, J. C., Clough, S. A., Flynn, C., Khaiyer, M. M.,
Liljegren, J., Johnson, K., Lin, B., Long, C., Marshak, A., Matrosov, S. Y.,
McFarlane, S. A., Miller, M., Min, Q., Minis, P., O'Hirok, W., Wang, Z., and
Wiscombe, W.: Thin liquid water clouds: their importance and our
challenge, B. Am. Meteorol. Soc., 88, 177–190,
https://doi.org/10.1175/BAMS-88-2-177, 2007.
van Diedenhoven, B., Ackerman, A. S., Fridlind, A. M., Cairns, B., and
Riedi, J.: Global statistics of ice microphysical and optical properties at
tops of optically thick ice clouds, J. Geophys. Res.-Atmos., 125, e2019JD031811, https://doi.org/10.1029/2019JD031811, 2020.
Vaughan, M., Powell, K., Kuehn, R., Young, S., Winker, D., Hostetler, C.,
Hunt, W., Liu, Z., McGill, M., and Getzewich, B.: Fully automated detection
of cloud and aerosol layers in the CALIPSO lidar measurements, J. Atmos.
Oceanic Technol., 26, 2034–2050, https://doi.org/10.1175/2009JTECHA1228.1,
2009.
Wagner, R., Benz, S., Möhler, O., Saathoff, H., Schnaiter, M., and
Schurath, U.: Mid-infrared extinction spectra and optical constants of
supercooled water droplets, J. Phys. Chem. A, 109, 7099–7112,
https://doi.org/10.1021/jp051942z, 2005.
Wang, C., Yang, P., Baum B. A., Platnick, S., Heidinger, A. K., Hu, Y., and
Holz, R.: Retrieval of ice cloud optical thickness and effective particle
size using a fast infrared radiative transfer model, J. Appl. Meteor.
Climatol., 50, 2283–2297, https://doi.org/10.1175/JAMC-D-11-067.1, 2011.
Wang, C., Platnick, S., Zhang, Z., Meyer, K., and Yang, P.: Retrieval of ice
cloud properties using an optimal estimation algorithm and MODIS infrared
observations: 1. Forward model, error analysis, and information content, J.
Geophys. Res.-Atmos., 121, 5809–5826, https://doi.org/10.1002/2015JD024526,
2016.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: a revised compilation, J. Geophys. Res., 113,
D14220, https://doi.org/10.1029/2007JD009744, 2008.
Winker, D. M., Pelon, J., Coakley Jr, J. A., Ackerman, S. A., Charlson, R.
J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T.
L., Le Treut, H., McCormick, M. P., Mégie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: A
global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91,
1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Yang, P., Wei, H., Huang, H. L., Baum, B. A., Hu, Y. X., Kattawar, G. W.,
Mishchenko, M. I., and Fu, Q.: Scattering and absorption property database
for non-spherical ice particles in the near-through far-infrared spectral
region, Appl. Opt., 44, 5512–5523, https://doi.org/10.1364/AO.44.005512,
2005.
Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M.
I., and Cole, B.: Spectrally consistent scattering, absorption, and
polarization properties of atmospheric ice crystals at wavelengths from 0.2 µm to 100 µm, J. Atmos. Sci., 70, 330–347, 2013.
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018.
Zasetsky, A. Y., Khalizov, A. F., Earle, M. E., and Sloan, J. J.: Frequency
dependent complex refractive indices of supercooled liquid water and ice
determined from aerosol extinction spectra, J. Phys. Chem. A., 109,
2760–2764, 2005.
Zhang, Z., Platnick, S., Yang, P., Heidinger, A. K., and Comstock, J. M:
Effects of ice particle size vertical inhomogeneity on the passive remote
sensing of ice clouds, J. Geophys. Res., 115, D17203,
https://doi.org/10.1029/2010JD013835, 2010.
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 as a result of the significant changes implemented in the version 4 algorithms, which are presented in a companion paper (Part I).
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical...
Special issue