Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3541-2021
https://doi.org/10.5194/amt-14-3541-2021
Research article
 | 
18 May 2021
Research article |  | 18 May 2021

Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations

Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli

Related authors

Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024,https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
On the polarimetric backscatter by a still or quasi-still wind turbine
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023,https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary

Cited articles

Angulo, I., de la Vega, D., Cascon, I., Canizo, J., Wu, Y., Guerra, D., and Angueira, P.: Impact analysis of wind farms on telecommunication services, Renewable and Sustainable Energy Reviews, 32, 84–99, https://doi.org/10.1016/j.rser.2013.12.055, 2014. a
Angulo, I., Grande, O., Jenn, D., Guerra, D., and de la Vega, D.: Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services, Atmos. Meas. Tech., 8, 2183–2193, https://doi.org/10.5194/amt-8-2183-2015, 2015. a, b, c
Battan, L. J.: Radar observation of the atmosphere, University of Chicago press, Chicago, USA, 324 pp., https://doi.org/10.1002/qj.49709942229, 1973. a
Bredemeyer, J., Schubert, K., Werner, J., Schrader, T., and Mihalachi, M.: Comparison of principles for measuring the reflectivity values from wind turbines, in: 2019 20th International Radar Symposium (IRS), pp. 1–10, https://doi.org/10.23919/IRS.2019.8768171, 2019. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press, Cambridge, UK, 636 pp., https://doi.org/10.1017/CBO9780511541094, 2001. a
Download
Short summary
We show results from two unique measurement campaigns aimed at better understanding effects of large wind turbines on radar returns by deploying a mobile X-band weather radar system in the proximity of a small wind park. Measurements were taken in 24/7 operation with dedicated scan strategies to retrieve the variability and most extreme values of reflectivity and radar cross-section of the wind turbines. The findings are useful for wind turbine interference mitigation measures in radar systems.
Share