Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4305-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-4305-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign
Kristopher M. Bedka
CORRESPONDING AUTHOR
NASA Langley Research Center, Hampton, VA, USA
Amin R. Nehrir
NASA Langley Research Center, Hampton, VA, USA
Michael Kavaya
NASA Langley Research Center, Hampton, VA, USA
Rory Barton-Grimley
NASA Langley Research Center, Hampton, VA, USA
Mark Beaubien
Yankee Environmental Systems, Inc., Turners Falls, MA, USA
Brian Carroll
NASA Postdoctoral Fellowship Program, Universities Space Research Association, NASA Langley Research Center, Hampton, VA, USA
James Collins
Science Systems and Applications, Inc., Hampton, VA, USA
John Cooney
NASA Postdoctoral Fellowship Program, Universities Space Research Association, NASA Langley Research Center, Hampton, VA, USA
G. David Emmitt
Simpson Weather Associates, Charlottesville, VA, USA
Steven Greco
Simpson Weather Associates, Charlottesville, VA, USA
Susan Kooi
Science Systems and Applications, Inc., Hampton, VA, USA
Tsengdar Lee
NASA Headquarters, Washington, DC, USA
Zhaoyan Liu
NASA Langley Research Center, Hampton, VA, USA
Sharon Rodier
Science Systems and Applications, Inc., Hampton, VA, USA
Gail Skofronick-Jackson
NASA Headquarters, Washington, DC, USA
Related authors
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023, https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Short summary
Convection in the Asian monsoon provides an important pathway for the transport of boundary layer and tropospheric air, and potentially pollution and chemically active species, into the stratosphere. We analyzed the distribution of the fastest and deepest convection with geostationary satellite detections for the months of May through October of 2017. We find significant differences in the geographic and monthly distributions of cross-tropopause convection across the Asian monsoon region.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-342, https://doi.org/10.5194/nhess-2021-342, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance loss data. It is found that hail concentrate mainly in the southeast. Multivariate stochastic modeling of event properties, such as multiple events on a day or track dimensions, yields an event catalog for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, required for insurance companies.
Benjamin R. Scarino, Kristopher Bedka, Rajendra Bhatt, Konstantin Khlopenkov, David R. Doelling, and William L. Smith Jr.
Atmos. Meas. Tech., 13, 5491–5511, https://doi.org/10.5194/amt-13-5491-2020, https://doi.org/10.5194/amt-13-5491-2020, 2020
Short summary
Short summary
This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angles.
Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe
Atmos. Meas. Tech., 11, 1615–1637, https://doi.org/10.5194/amt-11-1615-2018, https://doi.org/10.5194/amt-11-1615-2018, 2018
Short summary
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.
Robert L. Herman, Eric A. Ray, Karen H. Rosenlof, Kristopher M. Bedka, Michael J. Schwartz, William G. Read, Robert F. Troy, Keith Chin, Lance E. Christensen, Dejian Fu, Robert A. Stachnik, T. Paul Bui, and Jonathan M. Dean-Day
Atmos. Chem. Phys., 17, 6113–6124, https://doi.org/10.5194/acp-17-6113-2017, https://doi.org/10.5194/acp-17-6113-2017, 2017
Short summary
Short summary
This study reports new aircraft field observations of elevated water vapor greater than 10 ppmv in the overworld stratosphere over the summertime continental US. Back trajectories from the flight track intersect overshooting convective tops within the previous 1 to 7 days, suggesting that ice is convectively and irreversibly transported to the stratosphere in the most energetic overshooting convective events. Satellite measurements (Aura MLS) indicate that such events are uncommon (< 1 %).
Benjamin R. Scarino, Patrick Minnis, Thad Chee, Kristopher M. Bedka, Christopher R. Yost, and Rabindra Palikonda
Atmos. Meas. Tech., 10, 351–371, https://doi.org/10.5194/amt-10-351-2017, https://doi.org/10.5194/amt-10-351-2017, 2017
Short summary
Short summary
Global coverage of remotely sensed skin temperature, along with cloud/surface radiation parameters, produced in near-real time and from historical satellite data, is beneficial for weather and climate purposes. One key drawback is the dependence on view angle. Therefore, this article serves to validate a global, satellite-based skin temperature product, while highlighting an empirically adjusted theoretical model of satellite LST angular anisotropy, and the benefits gained from its application.
T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka
Atmos. Chem. Phys., 14, 7045–7057, https://doi.org/10.5194/acp-14-7045-2014, https://doi.org/10.5194/acp-14-7045-2014, 2014
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023, https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Short summary
Convection in the Asian monsoon provides an important pathway for the transport of boundary layer and tropospheric air, and potentially pollution and chemically active species, into the stratosphere. We analyzed the distribution of the fastest and deepest convection with geostationary satellite detections for the months of May through October of 2017. We find significant differences in the geographic and monthly distributions of cross-tropopause convection across the Asian monsoon region.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022, https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-342, https://doi.org/10.5194/nhess-2021-342, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance loss data. It is found that hail concentrate mainly in the southeast. Multivariate stochastic modeling of event properties, such as multiple events on a day or track dimensions, yields an event catalog for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, required for insurance companies.
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Benjamin R. Scarino, Kristopher Bedka, Rajendra Bhatt, Konstantin Khlopenkov, David R. Doelling, and William L. Smith Jr.
Atmos. Meas. Tech., 13, 5491–5511, https://doi.org/10.5194/amt-13-5491-2020, https://doi.org/10.5194/amt-13-5491-2020, 2020
Short summary
Short summary
This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angles.
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
Short summary
The mechanisms linking convection and air motion are major factors in much of the uncertainty in weather prediction, but complementary measurements of these quantities are rarely taken in close proximity. These quantities are shown from the 2017 Convective Processes Experiment (CPEX), wherein cloud and vertical air motion winds derived from the APR-2 airborne Doppler radar are combined with joint Doppler wind lidar (DAWN) measurements in the aerosol-rich regions surrounding the convection.
Duane Waliser, Peter J. Gleckler, Robert Ferraro, Karl E. Taylor, Sasha Ames, James Biard, Michael G. Bosilovich, Otis Brown, Helene Chepfer, Luca Cinquini, Paul J. Durack, Veronika Eyring, Pierre-Philippe Mathieu, Tsengdar Lee, Simon Pinnock, Gerald L. Potter, Michel Rixen, Roger Saunders, Jörg Schulz, Jean-Noël Thépaut, and Matthias Tuma
Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, https://doi.org/10.5194/gmd-13-2945-2020, 2020
Short summary
Short summary
This paper provides an update to an international research activity whose objective is to facilitate access to satellite and other types of regional and global datasets for evaluating global models used to produce 21st century climate projections.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
Short summary
The Cloud Aerosol Transport System (CATS) demonstrated that direct calibration of 1064 nm lidar data from a spaceborne platform is possible. By normalizing the CATS signal to a modeled molecular backscatter profile the CATS data were calibrated, enabling the derivation of optical properties of clouds and aerosols. Comparisons of the calibrated signal with airborne lidar, ground-based lidar, and spaceborne lidar all show agreement within the estimated error bars of the respective instruments.
Shan Zeng, Mark Vaughan, Zhaoyan Liu, Charles Trepte, Jayanta Kar, Ali Omar, David Winker, Patricia Lucker, Yongxiang Hu, Brian Getzewich, and Melody Avery
Atmos. Meas. Tech., 12, 2261–2285, https://doi.org/10.5194/amt-12-2261-2019, https://doi.org/10.5194/amt-12-2261-2019, 2019
Short summary
Short summary
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol discrimination (CAD) algorithm to correctly distinguish between clouds and aerosols detected in the CALIPSO lidar backscatter signals. FKM is an unsupervised learning algorithm, so the classifications it derives are wholly independent from those reported by the CAD scheme. For a full month of measurements, the two techniques agree in ~ 95 % of all cases, providing strong evidence for CAD correctness.
Meloë S. Kacenelenbogen, Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, Samuel LeBlanc, Yohei Shinozuka, John Livingston, Qin Zhang, and Kathleen A. Powell
Atmos. Chem. Phys., 19, 4933–4962, https://doi.org/10.5194/acp-19-4933-2019, https://doi.org/10.5194/acp-19-4933-2019, 2019
Short summary
Short summary
Significant efforts are required to estimate the direct radiative effects of aerosols above clouds (DAREcloudy). We have used a combination of passive and active A-Train satellite sensors and derive mainly positive global and regional DAREcloudy values (e.g., global seasonal values between 0.13 and 0.26 W m-2). Despite differences in methods and sensors, the DAREcloudy values in this study are generally higher than previously reported. We discuss the primary reasons for these higher estimates.
Zhaoyan Liu, Jayanta Kar, Shan Zeng, Jason Tackett, Mark Vaughan, Melody Avery, Jacques Pelon, Brian Getzewich, Kam-Pui Lee, Brian Magill, Ali Omar, Patricia Lucker, Charles Trepte, and David Winker
Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, https://doi.org/10.5194/amt-12-703-2019, 2019
Short summary
Short summary
We describe the enhancements made to the cloud–aerosol discrimination (CAD) algorithms used to produce the CALIPSO version 4 (V4) data products. Revisions to the CAD probability distribution functions have greatly improved the recognition of aerosol layers lofted into the upper troposphere, and CAD is now applied to all layers detected in the stratosphere and all layers detected at single-shot resolution. Detailed comparisons show significant improvements relative to previous versions.
Mark Vaughan, Anne Garnier, Damien Josset, Melody Avery, Kam-Pui Lee, Zhaoyan Liu, William Hunt, Jacques Pelon, Yongxiang Hu, Sharon Burton, Johnathan Hair, Jason L. Tackett, Brian Getzewich, Jayanta Kar, and Sharon Rodier
Atmos. Meas. Tech., 12, 51–82, https://doi.org/10.5194/amt-12-51-2019, https://doi.org/10.5194/amt-12-51-2019, 2019
Short summary
Short summary
The version 4 (V4) release of the CALIPSO data products includes substantial improvements to the calibration of the CALIOP 1064 nm channel. In this paper we review the fundamentals of 1064 nm lidar calibration, explain the motivations for the changes made to the algorithm, and describe the mechanics of the V4 calibration technique. Internal consistency checks and comparisons to collocated high spectral resolution lidar measurements show the V4 1064 nm calibration coefficients to within ~ 3 %.
Man-Hae Kim, Ali H. Omar, Jason L. Tackett, Mark A. Vaughan, David M. Winker, Charles R. Trepte, Yongxiang Hu, Zhaoyan Liu, Lamont R. Poole, Michael C. Pitts, Jayanta Kar, and Brian E. Magill
Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, https://doi.org/10.5194/amt-11-6107-2018, 2018
Short summary
Short summary
This paper discusses recent advances made in distinguishing among different aerosols species detected in the CALIPSO lidar measurements. A new classification algorithm now classifies four different aerosol types in the stratosphere, and the number of aerosol types recognized in the troposphere has increased from six to seven. The lidar ratios characterizing each type have been updated and the effects of these changes on CALIPSO retrievals of aerosol optical depth are examined in detail.
Xiaomei Lu, Yongxiang Hu, Yuekui Yang, Mark Vaughan, Zhaoyan Liu, Sharon Rodier, William Hunt, Kathy Powell, Patricia Lucker, and Charles Trepte
Atmos. Meas. Tech., 11, 3281–3296, https://doi.org/10.5194/amt-11-3281-2018, https://doi.org/10.5194/amt-11-3281-2018, 2018
Short summary
Short summary
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. The surface bidirectional reflectances retrieved from CALIOP measurements contribute complementary data for existing MODIS standard data products and could be used to detect and monitor seasonal surface reflectance changes in high latitude regions where passive MODIS measurements are limited.
Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe
Atmos. Meas. Tech., 11, 1615–1637, https://doi.org/10.5194/amt-11-1615-2018, https://doi.org/10.5194/amt-11-1615-2018, 2018
Short summary
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.
Jayanta Kar, Mark A. Vaughan, Kam-Pui Lee, Jason L. Tackett, Melody A. Avery, Anne Garnier, Brian J. Getzewich, William H. Hunt, Damien Josset, Zhaoyan Liu, Patricia L. Lucker, Brian Magill, Ali H. Omar, Jacques Pelon, Raymond R. Rogers, Travis D. Toth, Charles R. Trepte, Jean-Paul Vernier, David M. Winker, and Stuart A. Young
Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, https://doi.org/10.5194/amt-11-1459-2018, 2018
Short summary
Short summary
We present the motivation for and the implementation of the version 4.1 nighttime 532 nm parallel-channel calibration of the CALIOP lidar. The accuracy of calibration is significantly improved by raising the molecular normalization altitude from 30–34 km to 36–39 km to substantially reduce stratospheric aerosol contamination. The new calibration procedure eliminates biases in earlier versions and leads to an improved representation of stratospheric aerosols.
Robert L. Herman, Eric A. Ray, Karen H. Rosenlof, Kristopher M. Bedka, Michael J. Schwartz, William G. Read, Robert F. Troy, Keith Chin, Lance E. Christensen, Dejian Fu, Robert A. Stachnik, T. Paul Bui, and Jonathan M. Dean-Day
Atmos. Chem. Phys., 17, 6113–6124, https://doi.org/10.5194/acp-17-6113-2017, https://doi.org/10.5194/acp-17-6113-2017, 2017
Short summary
Short summary
This study reports new aircraft field observations of elevated water vapor greater than 10 ppmv in the overworld stratosphere over the summertime continental US. Back trajectories from the flight track intersect overshooting convective tops within the previous 1 to 7 days, suggesting that ice is convectively and irreversibly transported to the stratosphere in the most energetic overshooting convective events. Satellite measurements (Aura MLS) indicate that such events are uncommon (< 1 %).
Benjamin R. Scarino, Patrick Minnis, Thad Chee, Kristopher M. Bedka, Christopher R. Yost, and Rabindra Palikonda
Atmos. Meas. Tech., 10, 351–371, https://doi.org/10.5194/amt-10-351-2017, https://doi.org/10.5194/amt-10-351-2017, 2017
Short summary
Short summary
Global coverage of remotely sensed skin temperature, along with cloud/surface radiation parameters, produced in near-real time and from historical satellite data, is beneficial for weather and climate purposes. One key drawback is the dependence on view angle. Therefore, this article serves to validate a global, satellite-based skin temperature product, while highlighting an empirically adjusted theoretical model of satellite LST angular anisotropy, and the benefits gained from its application.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
B. T. Johnson, W. S. Olson, and G. Skofronick-Jackson
Atmos. Meas. Tech., 9, 9–21, https://doi.org/10.5194/amt-9-9-2016, https://doi.org/10.5194/amt-9-9-2016, 2016
Short summary
Short summary
This research explores, through simulations, how a realistically shaped snowflake aggregate begins the melting process and how microwave-based satellite observations are sensitive to those initial stages of melting. Using highly detailed physical models, and high-precision numerical models, we can accurately simulate the sensitivity of observations to this critical transition from dry snow to melting snow. This research improves on existing models, providing an accurate measurement basis.
S. P. Burton, J. W. Hair, M. Kahnert, R. A. Ferrare, C. A. Hostetler, A. L. Cook, D. B. Harper, T. A. Berkoff, S. T. Seaman, J. E. Collins, M. A. Fenn, and R. R. Rogers
Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, https://doi.org/10.5194/acp-15-13453-2015, 2015
Short summary
Short summary
The manuscript describes measurements of particle depolarization ratio from the NASA airborne HSRL-2 at three wavelengths, for two dust cases and a smoke case. Differences in the spectral dependence of particle depolarization ratio are due to the sizes of the non-spherical particles, large for dust and small for smoke. The large depolarization at 355nm for smoke has not been previously reported and may impact aerosol typing when only a single wavelength is available.
S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir
Atmos. Meas. Tech., 8, 1073–1087, https://doi.org/10.5194/amt-8-1073-2015, https://doi.org/10.5194/amt-8-1073-2015, 2015
Short summary
Short summary
A water vapor lidar has been designed and tested which has the potential to enable a national-scale network. The system is low-maintenance, low-cost, eye-safe, and provides continuous profiles of water vapor with complete coverage, including periods of daytime bright clouds, from 300m above ground level to 4km with 150m nominal vertical resolution and 1 min temporal resolution. The sensor may be useful in improving our understanding of the distribution of atmospheric water vapor.
Z. Liu, D. Winker, A. Omar, M. Vaughan, J. Kar, C. Trepte, Y. Hu, and G. Schuster
Atmos. Chem. Phys., 15, 1265–1288, https://doi.org/10.5194/acp-15-1265-2015, https://doi.org/10.5194/acp-15-1265-2015, 2015
T. D. Fairlie, J.-P. Vernier, M. Natarajan, and K. M. Bedka
Atmos. Chem. Phys., 14, 7045–7057, https://doi.org/10.5194/acp-14-7045-2014, https://doi.org/10.5194/acp-14-7045-2014, 2014
S. Rodier, Y. Hu, and M. Vaughan
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4681-2013, https://doi.org/10.5194/tcd-7-4681-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data
Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Rainfall retrieval algorithm for commercial microwave links: stochastic calibration
Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system
Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden
Intercomparison review of IPWV retrieved from INSAT-3DR sounder, GNSS and CAMS reanalysis data
Sensitivity of Aeolus HLOS winds to temperature and pressure specification in the L2B processor
Improved method of estimating temperatures at meteor peak heights
Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial-resolution distribution
Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica
Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia
A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Flywheel calibration of a continuous-wave coherent Doppler wind lidar
Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product
Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study
Validation of Aeolus wind products above the Atlantic Ocean
Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy
Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980
Inter-calibrating SMMR brightness temperatures over continental surfaces
Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations
Retrieval of lower-order moments of the drop size distribution using CSU-CHILL X-band polarimetric radar: a case study
Gradient boosting machine learning to improve satellite-derived column water vapor measurement error
Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record
Consistency and structural uncertainty of multi-mission GPS radio occultation records
First validation of Aeolus wind observations by airborne Doppler wind lidar measurements
Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator
Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite
Automatic quality control of the Meteosat First Generation measurements
Concurrent satellite and ground-based lightning observations from the Optical Lightning Imaging Sensor (ISS-LIS), the low-frequency network Meteorage and the SAETTA Lightning Mapping Array (LMA) in the northwestern Mediterranean region
Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms
A geometry-dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals – Part 2: Evaluation over open ocean
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022, https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
Short summary
Integrated water vapour measurements are often compared for the calibration and validation of instruments or techniques. Measurements made at different altitudes must be corrected to account for the vertical variation of water vapour. This paper shows that the widely used empirical correction model has severe limitations that are overcome using the proposed model. The method is applied to the inter-comparison of GPS and satellite microwave radiometer data in a tropical mountainous area.
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022, https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Short summary
The Global Positioning System (GPS) radio occultation (RO) technique is a satellite-based method for producing highly accurate vertical profiles of atmospheric temperature and pressure. RO profiles are used to monitor global climate trends, particularly in that region of the atmosphere that includes the lower stratosphere. Two data sets spanning 1995–1997 that were produced from the first RO satellite are highly accurate and can be used to assess global atmospheric models.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Damao Zhang, Jennifer Comstock, and Victor Morris
Atmos. Meas. Tech., 15, 4735–4749, https://doi.org/10.5194/amt-15-4735-2022, https://doi.org/10.5194/amt-15-4735-2022, 2022
Short summary
Short summary
The planetary boundary layer is the lowest part of the atmosphere. Its structure and depth (PBLHT) significantly impact air quality, global climate, land–atmosphere interactions, and a wide range of atmospheric processes. To test the robustness of the ceilometer-estimated PBLHT under different atmospheric conditions, we compared ceilometer- and radiosonde-estimated PBLHTs using multiple years of U.S. DOE ARM measurements at various ARM observatories located around the world.
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022, https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary
Short summary
Our work investigates the behavior of errors in remote-sensing wind lidar measurements due to turbulence. Using a virtual instrument, we measured winds in simulated atmospheric flows and decomposed the resulting error. Dominant error mechanisms, particularly vertical velocity variations and interactions with shear, were identified in ensemble data over three test cases. By analyzing the underlying mechanisms, the response of the error behavior to further varying flow conditions may be projected.
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022, https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Short summary
The evolution of the atmospheric boundary layer height (ABLH) has an important impact on meteorology. However, the complexity of the phenomena occurring within the ABL and the influence of advection and local accumulation processes often prevent an unambiguous determination of the ABLH. The paper reports results from an inter-comparison effort involving different sensors and techniques to measure the ABLH. Correlations between the ABLH and other atmospheric variables are also assessed.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech., 15, 4125–4133, https://doi.org/10.5194/amt-15-4125-2022, https://doi.org/10.5194/amt-15-4125-2022, 2022
Short summary
Short summary
Monitoring ultraviolet (UV) radiation is important since it can have harmful effects on the biosphere. Array spectroradiometers are increasingly used to measure UV as they are more versatile than scanning spectroradiometers. In this study, the long-term performance of the BTS-2048-UV-S-WP array spectroradiometer was assessed. The results show that the BTS can reliably measure both the UV index and UV radiation in the 300–360 nm range. Moreover, the BTS was stable and showed no seasonal behavior.
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022, https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Short summary
Lidars can measure the wind profile in the lower part of the atmosphere, provided that the wind field is horizontally uniform and does not change during the time of the measurement. These requirements are mostly not fulfilled in reality, and the lidar wind measurement will thus hold a certain error. We investigate different strategies for lidar wind profiling using a lidar simulator implemented in a numerical simulation of the wind field. Our findings can help to improve wind measurements.
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022, https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary
Short summary
Winds that are crucial to weather forecasting derived from two different techniques – tracking satellite images (AMVs) and direct measurement of molecular and aerosol motions by Doppler lidar (Aeolus satellite winds) – are compared. We find that AMVs and Aeolus winds are highly correlated. Aeolus Mie-cloudy winds have great potential value as a comparison standard for AMVs. Larger differences are found in the Southern Hemisphere related to higher wind speed and higher vertical variation in wind.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Short summary
During the VAL-OUC campaign, we established a coherent Doppler lidar (CDL) network over China to verify the Level 2B (L2B) products from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations, the L2B products from Aeolus are compared with those from CDLs. To our knowledge, the VAL-OUC campaign is the most extensive so far between CDLs and Aeolus in the lower troposphere for different atmospheric scenes. The vertical velocity impact on the HLOS retrieval from Aeolus is evaluated.
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech., 15, 21–39, https://doi.org/10.5194/amt-15-21-2022, https://doi.org/10.5194/amt-15-21-2022, 2022
Short summary
Short summary
The assimilation of GNSS data in weather models has a positive impact on the forecasts. The impact is still limited due to using only the GPS zenith direction parameters. We calculate and validate more advanced tropospheric products from three satellite systems: the US American GPS, Russian GLONASS and European Galileo. The quality of all the solutions is comparable; however, combining more GNSS systems enhances the observations' geometry and improves the quality of the weather forecasts.
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021, https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
Short summary
The first space-based Doppler wind lidar on board the Aeolus satellite was launched on 22 August 2018 to obtain global horizontal wind profiles. In this study, wind profilers, ground-based coherent Doppler wind lidars, and GPS radiosondes were used to validate the quality of Aeolus Level 2B wind products over Japan during three different periods. The results show that Aeolus can measure the horizontal winds over Japan accurately.
Tim A. van Kempen, Filippo Oggionni, and Richard M. van Hees
Atmos. Meas. Tech., 14, 6711–6722, https://doi.org/10.5194/amt-14-6711-2021, https://doi.org/10.5194/amt-14-6711-2021, 2021
Short summary
Short summary
Validation of the instrument stability of the TROPOMI-SWIR module is done by monitoring a group of very stable and remote locations in the Saharan and Arabian deserts. These results confirm the excellent stability and lack of degradation of the TROPOMI-SWIR module derived from the internal calibration sources. The method was done for the first time on a spectrometer in the short-wave infrared and ensures TROPOMI-SWIR can be used for atmospheric research for years to come.
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021, https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
Short summary
In this paper we study the impact of using wind observations from the Aeolus satellite, which provides wind speed profiles globally, in our numerical weather prediction system using a regional model covering the Nordic countries. The wind speed profiles from Aeolus are assimilated by the model, and we see that they have an impact on both the model analysis and forecast, though given the relatively few observations available the impact is often small.
Yuefei Zeng, Tijana Janjic, Yuxuan Feng, Ulrich Blahak, Alberto de Lozar, Elisabeth Bauernschubert, Klaus Stephan, and Jinzhong Min
Atmos. Meas. Tech., 14, 5735–5756, https://doi.org/10.5194/amt-14-5735-2021, https://doi.org/10.5194/amt-14-5735-2021, 2021
Short summary
Short summary
Observation errors (OEs) of radar measurements are correlated. The Desroziers method has been often used to estimate statistics of OE in data assimilation. However, the resulting statistics consist of contributions from different sources and are difficult to interpret. Here, we use an approach based on samples for truncation error to approximate the representation error due to unresolved scales and processes (RE) and compare its statistics with OE statistics estimated by the Desroziers method.
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
Short summary
Wind measurements from two radars (ESRAD in Arctic Sweden and MARA at the Indian Antarctic station Maitri) are compared with lidar winds from the ESA satellite Aeolus, for July–December 2019. The aim is to check if Aeolus data processing is adequate for the sunlit conditions of polar summer. Agreement is generally good with bias in Aeolus winds < 1 m/s in most circumstances. The exception is a large bias (7 m/s) when the satellite has crossed a sunlit Antarctic ice cap before passing MARA.
Ramashray Yadav, Ram Kumar Giri, and Virendra Singh
Atmos. Meas. Tech., 14, 4857–4877, https://doi.org/10.5194/amt-14-4857-2021, https://doi.org/10.5194/amt-14-4857-2021, 2021
Short summary
Short summary
We performed an intercomparison of seasonal and annual studies of retrievals of integrated precipitable water vapor (IPWV) carried out by INSAT-3DR satellite-borne infrared radiometer sounding and CAMS reanalysis data with ground-based Indian GNSS data. The magnitude and sign of the bias of INSAT-3DR and CAMS with respect to GNSS IPWV differs from station to station and season to season. A statistical evaluation of the collocated data sets was done to improve day-to-day weather forecasting.
Matic Šavli, Vivien Pourret, Christophe Payan, and Jean-François Mahfouf
Atmos. Meas. Tech., 14, 4721–4736, https://doi.org/10.5194/amt-14-4721-2021, https://doi.org/10.5194/amt-14-4721-2021, 2021
Short summary
Short summary
The ESA's Aeolus satellite wind retrieval is provided through a series of processors. It depends on the temperature and pressure specification, which, however, are not measured by the satellite. The numerical weather predicted values are used instead, but these are erroneous. This article studies the sensitivity of the wind retrieval by introducing errors in temperature and pressure. This has been found to be small for Aeolus but is expected to be more crucial for future missions.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021, https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary
Short summary
We validate horizontal wind measurements at altitudes of 0.5–14 km made with atmospheric radars: ESRAD located near Kiruna in the Swedish Arctic and MARA at the Indian research station Maitri in Antarctica, by comparison with radiosondes, the regional model HARMONIE-AROME and the ECMWF ERA5 reanalysis. Good agreement was found in general, and radar bias and uncertainty were estimated. These radars are planned to be used for validation of winds measured by lidar by the ESA satellite Aeolus.
Gizachew Kabite Wedajo, Misgana Kebede Muleta, and Berhan Gessesse Awoke
Atmos. Meas. Tech., 14, 2299–2316, https://doi.org/10.5194/amt-14-2299-2021, https://doi.org/10.5194/amt-14-2299-2021, 2021
Short summary
Short summary
Satellite rainfall estimates (SREs) are alternative data sources for data-scarce basins. However, the accuracy of the products is plagued by multiple sources of errors. Therefore, SREs should be evaluated for particular basins before being used for other applications. The results of the study showed that CHIRPS2 and IMERG6 estimated rainfall and predicted hydrologic simulations well for Dhidhessa River Basin, which shows remote sensing technology could improve hydrologic studies.
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021, https://doi.org/10.5194/amt-14-2219-2021, 2021
Short summary
Short summary
Doppler wind lidars are laser-based remote sensing instruments that measure the wind up to a few hundred metres or even a few kilometres. Their data can improve weather models and help forecasters. To investigate their accuracy and required meteorological conditions, we have carried out a 2-year measurement campaign of a wind lidar at our Cabauw test site and made a comparison with cup anemometers and wind vanes at several levels in a 213 m tall meteorological mast.
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021, https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
Short summary
Wind-tracking algorithms produce atmospheric motion vectors (AMVs) by tracking satellite observations. Accurately characterizing the uncertainties in AMVs is essential in assimilating them into data assimilation models. We develop a machine-learning-based approach for error characterization which involves Gaussian mixture model clustering and random forest using a simulation dataset of water vapor, AMVs, and true winds. We show that our method improves on existing AMV error characterizations.
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Short summary
This article presents a validation of 1.5 years of pure rotational temperature data measured by the Raman lidar RALMO installed at the MeteoSwiss station of Payerne. The statistical results are in terms of bias and standard deviation with respect to two well-established radiosounding systems. The statistics are divided into daytime (bias = 0.28 K, SD = 0.62±0.03 K) and nighttime (bias = 0.29 K, SD = 0.66±0.06 K). The lidar temperature profiles are applied to cloud supersaturation studies.
Anders Tegtmeier Pedersen and Michael Courtney
Atmos. Meas. Tech., 14, 889–903, https://doi.org/10.5194/amt-14-889-2021, https://doi.org/10.5194/amt-14-889-2021, 2021
Short summary
Short summary
This paper suggests and describes a method for calibrating wind lidars using a rotating flywheel. An uncertainty analysis shows that a standard uncertainty of 0.1 % can be achieved, with the main contributor being the width of the laser beam which is in agreement with experimental results. The method can potentially lower the calibration uncertainty of wind lidars, which today is often based on cup anemometers, and thus lead to better wind assessments and perhaps more widespread use.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
Short summary
A first validation for the European satellite Aeolus is presented. Aeolus is the first satellite that can actively measure horizontal wind profiles from space.
Radiosonde launches on board the German research vessel Polarstern have been utilized to validate Aeolus observations over the Atlantic Ocean, a region where almost no other reference measurements are available. It is shown that Aeolus is able to measure accurately atmospheric winds and thus may significantly improve weather forecasts.
Giacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, and Federico Porcù
Atmos. Meas. Tech., 13, 5779–5797, https://doi.org/10.5194/amt-13-5779-2020, https://doi.org/10.5194/amt-13-5779-2020, 2020
Short summary
Short summary
The microwave signal travelling between two antennas of the commercial mobile backhaul network is strongly attenuated by rainfall. The open-source RAINLINK algorithm extracts rainfall rate maps, processing the attenuation data recorded by the transmission system. In this work, we applied RAINLINK to 357 Vodafone links in northern Italy and compared the outputs with the operational rain products of the local weather service (Arpae), outlining pros and cons and discussing error structure.
Clark J. Weaver, Pawan K. Bhartia, Dong L. Wu, Gordon J. Labow, and David E. Haffner
Atmos. Meas. Tech., 13, 5715–5723, https://doi.org/10.5194/amt-13-5715-2020, https://doi.org/10.5194/amt-13-5715-2020, 2020
Short summary
Short summary
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the past and ask whether cloudiness has changed over the last 4 decades. Using a suite of nine satellite instruments, we need to ensure that the first satellite, which was launched in 1980 and died in 1991, observed the same measurement as the eight other satellite instruments used in the record. If the instruments were measuring length and observing a 1.00 m long stick, they would all see 0.99 to 1.01 m.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Zhilu Wu, Yanxiong Liu, Yang Liu, Jungang Wang, Xiufeng He, Wenxue Xu, Maorong Ge, and Harald Schuh
Atmos. Meas. Tech., 13, 4963–4972, https://doi.org/10.5194/amt-13-4963-2020, https://doi.org/10.5194/amt-13-4963-2020, 2020
Short summary
Short summary
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using ground-based GNSS observations along the coastline and shipborne GNSS observations over the Indian Ocean. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV, with 2.67 mm in rms within 100 km and an RMS of 1.57 mm with shipborne GNSS for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.
Viswanathan Bringi, Kumar Vijay Mishra, Merhala Thurai, Patrick C. Kennedy, and Timothy H. Raupach
Atmos. Meas. Tech., 13, 4727–4750, https://doi.org/10.5194/amt-13-4727-2020, https://doi.org/10.5194/amt-13-4727-2020, 2020
Short summary
Short summary
The raindrop size distribution and its moments are fundamental in many areas, such as radar measurement of rainfall using polarimetry and numerical modeling of the microphysical processes of rain formation and evolution. We develop a technique which uses advanced radar measurements and complete drop size distributions using two collocated instruments to retrieve the lower-order moments such as total drop concentration and rain water content. We demonstrate a proof-of-concept using a case study.
Allan C. Just, Yang Liu, Meytar Sorek-Hamer, Johnathan Rush, Michael Dorman, Robert Chatfield, Yujie Wang, Alexei Lyapustin, and Itai Kloog
Atmos. Meas. Tech., 13, 4669–4681, https://doi.org/10.5194/amt-13-4669-2020, https://doi.org/10.5194/amt-13-4669-2020, 2020
Short summary
Short summary
A flexible machine-learning model was fit to explain the differences between estimates of water vapor from satellites versus ground stations in Northeastern USA. We use nine variables derived from the satellite acquisition and ground characteristics to explain this measurement error. Our results showed overall good agreement, but data from the Terra satellite were drifting too high in recent summers. Our model reduces measurement error and works well in new locations in the northeast.
Hans Gleisner, Kent B. Lauritsen, Johannes K. Nielsen, and Stig Syndergaard
Atmos. Meas. Tech., 13, 3081–3098, https://doi.org/10.5194/amt-13-3081-2020, https://doi.org/10.5194/amt-13-3081-2020, 2020
Short summary
Short summary
Data from GPS radio occultation (RO) instruments aboard a series of satellites have been reprocessed by the ROM SAF. We describe the monthly mean RO climate data records (CDRs) and the methods for removing sampling errors. The quality of the CDRs is evaluated, with a focus on systematic differences between satellite missions. Between 8 and 30 km, the data quality and the inter-mission differences are small enough to allow the generation of combined multi-mission data records starting in 2001.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, and Fabian Weiler
Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, https://doi.org/10.5194/amt-13-2381-2020, 2020
Short summary
Short summary
Aeolus, the first ever wind lidar in space, has been providing wind profiles on a global scale since its launch. In order to validate the quality of Aeolus wind observations, the German Aerospace Center (DLR) recently performed two airborne campaigns over central Europe deploying two different Doppler wind lidars. A total of 10 satellite underflights were performed and used to validate the early-stage wind data product of Aeolus by means of collocated airborne wind lidar observations.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, https://doi.org/10.5194/amt-13-2075-2020, 2020
Short summary
Short summary
This work reports on the first airborne validation campaign of ESA’s Earth Explorer mission Aeolus, conducted in central Europe during the commissioning phase in November 2018. After presenting the methodology used to compare the data sets from the satellite, the airborne wind lidar and the ECWMF model, the wind results from the underflights performed are analyzed and discussed, providing a first assessment of the accuracy and precision of the preliminary Aeolus wind data.
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020, https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Short summary
In this study we thoroughly address the calibration and validation of the new polarimetric radio occultation (PRO) observables. These represent an innovative way to obtain vertical profiles of precipitation along with thermodynamic observations of the same scene. First we perform the on-orbit calibration of the measurement. Then, we show how the PRO observables are sensitive to the presence and intensity of rain by looking for coincident precipitation measurements from independent missions.
Freek Liefhebber, Sarah Lammens, Paul W. G. Brussee, André Bos, Viju O. John, Frank Rüthrich, Jacobus Onderwaater, Michael G. Grant, and Jörg Schulz
Atmos. Meas. Tech., 13, 1167–1179, https://doi.org/10.5194/amt-13-1167-2020, https://doi.org/10.5194/amt-13-1167-2020, 2020
Short summary
Short summary
The paper addresses the need for automatic quality control of a whole series of Earth observation (EO) time series extending a period of over 40 years. Such a dataset is valuable and may provide important information about trends related to geo-physical processes. Furthermore, as the dataset is that large, there is a need to completely automate the processes, as otherwise the effort would become impracticable. The result is a system with a high probability of detection and low false alarm rate.
Felix Erdmann, Eric Defer, Olivier Caumont, Richard J. Blakeslee, Stéphane Pédeboy, and Sylvain Coquillat
Atmos. Meas. Tech., 13, 853–875, https://doi.org/10.5194/amt-13-853-2020, https://doi.org/10.5194/amt-13-853-2020, 2020
Short summary
Short summary
This article compares lightning observations from an optical sensor onboard the International Space Station to two ground-based networks using different radio frequencies. The location and timing of coincident flashes agree well for the three instruments. Differences exist for the detected number of flashes and the characteristics. Small flashes in particular are not always detected by all three instruments. About half of the flashes at altitudes below 10 km are not seen by the satellite sensor.
Irene Crisologo and Maik Heistermann
Atmos. Meas. Tech., 13, 645–659, https://doi.org/10.5194/amt-13-645-2020, https://doi.org/10.5194/amt-13-645-2020, 2020
Short summary
Short summary
Archives of radar observations often suffer from errors, one of which is calibration. However, it is possible to correct them after the fact by using satellite radars as a calibration reference. We propose improvements to this calibration method by considering factors that affect the data quality, such that poor quality data gets filtered out in the bias calculation by assigning weights. We also show that the bias can be interpolated in time even for days when there are no satellite data.
Zachary Fasnacht, Alexander Vasilkov, David Haffner, Wenhan Qin, Joanna Joiner, Nickolay Krotkov, Andrew M. Sayer, and Robert Spurr
Atmos. Meas. Tech., 12, 6749–6769, https://doi.org/10.5194/amt-12-6749-2019, https://doi.org/10.5194/amt-12-6749-2019, 2019
Short summary
Short summary
The anisotropy of Earth's surface reflection plays an important role in satellite-based retrievals of cloud, aerosol, and trace gases. Most current ultraviolet and visible satellite retrievals utilize climatological surface reflectivity databases that do not account for surface anisotropy. The GLER concept was introduced to account for such features. Here we evaluate GLER for water surfaces by comparing with OMI measurements and show that it captures these surface anisotropy features.
Cited articles
Asrar, G., Bony, S., Boucher, O., Busalacchi, A., Cazenave, A., Dowell, M., Flato, G., Hegerl, G., Källén, E., Nakajima, T., Ratier, A., Saunders, R., Slingo, J., Sohn, B., Schmetz, J., Stevens, B., Zhang, P., and Zwiers, F.: Climate Symposium 2014: Findings and Recommendations, B. Am. Meteorol. Soc., 96, ES145–ES147, https://doi.org/10.1175/BAMS-D-15-00003.1, 2015.
Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020.
Bedka, K., Liu, Z., Rodier, S., Nehrir, A., Kooi, S., Collins, J., Carroll, B., and Beaubien, M.: Aeolus Calibration/Validation (Cal/Val), NASA Langley Atmospheric Science Data Center [data set], https://doi.org/10.5067/SUBORBITAL/AEOLUSCALVAL2019/DATA001, 2020.
Black, P., Harrison, L., Beaubien, M., Bluth, R., Woods, R., Penny, A., Smith, R. W., and Doyle, J. D.: High-Definition Sounding System (HDSS) for Atmospheric Profiling, J. Atmos. Ocean. Tech., 34, 777–796, https://doi.org/10.1175/JTECH-D-14-00210.1, 2017.
Braun, S. A., Kakar, R., Zipser, E., Heymsfield, G., Albers, C., Brown, S., Durden, S. L., Guimond, S., Halverson, J., Heymsfield, A., Ismail, S., Lambrigtsen, B., Miller, T., Tanelli, S., Thomas, J., and Zawislak, J.: NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment, B. Am. Meteorol. Soc., 94, 345–363, https://doi.org/10.1175/BAMS-D-11-00232.1, 2013.
Browell, E. V., Ismail, S., Hall, W. M., Moore, A. S., Kooi, S. A., Brackett, V. G., Clayton, M. B., Barrick, J. D. W., Schmidlin, F. J., Higdon, N. S., Melfi, S. H., and Whiteman, D. N.: LASE Validation Experiment, in: Advances in Atmospheric Remote Sensing with Lidar, edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer-Verlag, Berlin, 289–295, 1997.
Brown, S. T., Lambrigtsen, B., Denning, R. F., Gaier, T., Kangaslahti, P., Lim, B. H., Tanabe, J. M., and Tanner, A. B.: The High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle: Instrument Description and Performance, IEEE T. Geosci. Remote, 49, 3291–3301, https://doi.org/10.1109/TGRS.2011.2125973, 2011.
Bucci, L. R., O'Handley, C., Emmitt, G. D., Zhang, J. A., Ryan, K., and Atlas, R.: Validation of an Airborne Doppler Wind Lidar in Tropical Cyclones, Sensors, 18, 4288, https://doi.org/10.3390/s18124288, 2018.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Cui, Z., Pu, Z., Emmitt, G. D., and Greco, S.: The Impact of Airborne Doppler Aerosol Wind (DAWN) Lidar Wind Profiles on Numerical Simulations of Tropical Convective Systems during the NASA Convective Processes Experiment (CPEX), J. Atmos. Ocean. Tech., 37, 705–722, https://doi.org/10.1175/JTECH-D-19-0123.1, 2020.
Diskin, G. S., Podolske, J. R., Sachse, G. W., and Slate, T. A.: Open-path airborne tunable diode laser hygrometer, Diode Lasers and Applications in Atmospheric Sensing, Proc. SPIE, 4817, https://doi.org/10.1117/12.453736, 2002.
Doyle, J. D., Moskaitis, J. R., Feldmeier, J. W., Ferek, R. J., Beaubien, M., Bell, M. M., Cecil, D. L., Creasey, R. L., Duran, P., Elsberry, R. L., Komaromi, W. A., Molinari, J., Ryglicki, D. R., Stern, D. P., Velden, C. S., Wang, X., Allen, T., Barrett, B. S., Black, P. G., Dunion, J. P., Emanuel, K. A., Harr, P. A., Harrison, L., Hendricks, E. A., Herndon, D., Jeffries, W. Q., Majumdar, S. J., Moore, J. A., Pu, Z., Rogers, R. F., Sanabia, E. R., Tripoli, G. J., and Zhang, D.: A View of Tropical Cyclones from Above: The Tropical Cyclone Intensity Experiment, B. Am. Meteorol. Soc., 98, 2113–2134, https://doi.org/10.1175/BAMS-D-16-0055.1, 2017.
DuVivier, A. K., Cassano, J. J., Greco, S., and Emmitt, G. D.: A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015, Mon. Weather Rev., 145, 2385–2404, https://doi.org/10.1175/MWR-D-16-0386.1, 2017.
ESA: ADM-Aeolus Mission Requirements Document, available online at: https://esamultimedia.esa.int/docs/EarthObservation/ADM-Aeolus_MRD.pdf (last access: 27 May 2021), 2016.
ESA: Aeolus Scientific Calibration and Validation Implementation Plan, available online at: https://earth.esa.int/pi/esa?id=4910&cmd=image&table=aotarget (last access: 27 May 2021), 2019.
ESAS: https://www.nationalacademies.org/our-work-decadal-survey-for-earth-science-and-applications-from-space (last access: 27 May 2021), 2017.
Flamant, P., Cuesta, J., Denneulin, M. L., Dabas, A., and Huber, D.: ADM-Aeolus retrieval algorithms for aerosol and cloud products, Tellus A, 60, 273–288, 2008.
Gelaro, R., McCarty, W., Suarez, M., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., Bosilovich, M., and Reichle, R.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Greco, S., Emmitt, G. D., Garstang, M., and Kavaya, M.: Doppler Aerosol WiNd (DAWN) Lidar during CPEX 2017: Instrument Performance and Data Utility, Remote Sens., 12, 2951, https://doi.org/10.3390/rs12182951, 2020.
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties, Appl. Optics., 47, 6734–6752, 2008.
Henderson, S. W., Gatt, P., Rees, D., and Huffaker, R. M.: Wind lidar. Laser Remote Sensing, edited by: Fujii, T. and Fukuchi, T., CRC Taylor and Francis, 469–722, 2005.
Holloway, C. E., Wing, A. A., Bony, S., Muller, C., Masunaga, H., L'Ecuyer, T. S., Turner, D. D., and Zuidema, P.: Observing Convective Aggregation, Surv. Geophys., 38, 1199–1236, https://doi.org/10.1007/s10712-017-9419-1, 2017.
Kanitz, T., Lochard, J., Marshall, J., McGoldrick, P., Lecrenier, O., Bravetti, P., Reitebuch, O., Rennie, M., Wernham, D., and Elfving, A.: Aeolus first light: first glimpse, in: Proc. SPIE, 11180, International Conference on Space Optics – ICSO 2018, 111801R, https://doi.org/10.1117/12.2535982, 2019.
Kavaya, M. J., Beyon, J. Y., Koch, G. J., Petros, M., Petzar, P. J., Singh, U. N., Trieu, B. C., and Yu, J.: The Doppler Aerosol Wind (DAWN) Airborne, Wind-Profiling Coherent-Detection Lidar System: Overview and Preliminary Flight Results, J. Atmos. Ocean. Tech., 31, 826–842, https://doi.org/10.1175/JTECH-D-12-00274.1, 2014.
Khaykin, S. M., Hauchecorne, A., Wing, R., Keckhut, P., Godin-Beekmann, S., Porteneuve, J., Mariscal, J.-F., and Schmitt, J.: Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations, Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020, 2020.
Koch, G. J, Beyon, J. Y., Modlin, E. A., Petzar, P. J., Woll, S., Petros, M., Yu, J., and Kavaya, M. J.: Side-scan Doppler lidar for offshore wind energy applications, J. Appl. Remote Sens., 6, 063562, https://doi.org/10.1117/1.JRS.6.063562, 2012.
Lebsock, M. D., L'Ecuyer, T. S., and Pincus, R.: An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles, Surv. Geophys., 38, 1237–1254, https://doi.org/10.1007/s10712-017-9443-1, 2017.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Schäfler, A., and Reitebuch, O.: Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus, Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, 2018.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020.
Marksteiner, U., Lemmerz, C., Lux, O., Rahm, S., Schäfler, A., Witschas, B., and Reitebuch, O.: Calibrations and Wind Observations of an Airborne Direct-Detection Wind LiDAR Supporting ESA's Aeolus Mission, Remote Sens., 10, 2056, https://doi.org/10.3390/rs10122056, 2018.
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021.
Mapes, B., Chandra, A. S., Kuang, Z., and Zuidema, P.: Importance Profiles for Water Vapor, Surv. Geophys., 38, 6, 1355–1369, 2017.
Measures, R. M.: Laser Remote Sensing: Fundamentals and Applications, John Wiley, New York, 510 pp., ISBN: 0471081930, 9780471081937, 1984.
NASA: https://cpex.jpl.nasa.gov/cpex2017/index.php (last access: 21 May 2021), 2017.
Nehrir, A. R., Kiemle, C., Lebsock, M. D., Kirchengast, G., Buehler, S. A., Löhnert, U., Liu, C.-L., Hargrave, P. C., Barrera-Verdejo M., and Winker, D. M.: Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles, Surv. Geophys., 38, 1445–1482, https://doi.org/10.1007/s10712-017-9448-9, 2017.
Nehrir, A. R., Hair, J. W., Ferrare, R. A., Hostetler, C. A., Kooi, S. A., Notari, A., Harper, D. A., Collins Jr., J. E., Barton-Grimley, R. A., Antill, C., Hare, R. J., and Fitzpatrick, F.: The High Altitude Lidar Observatory (HALO): A multi-function lidar and technology testbed for airborne and space-based measurements of water vapor and methane, American Geophysical Union Fall Meeting 2018, Washington D.C., 10–14 December 2018, A31P-3155, 2018.
Nehrir, A. R., Hair, H., Ferrare R., Hostetler, C., Notari, A., Harper, D., Collins, J., Kooi, S., Barton-Grimley, R., and Fitzpatrick, F.: Airborne Lidar Observations of Water Vapor, Methane, and Aerosol/Cloud Profiles with the High Altitude Lidar Observatory, American Geophysical Union Fall Meeting, San Francisco, California, 9–13 December 2019, A43D-04, 2019.
Reitebuch O.: Wind Lidar for Atmospheric Research, in: Atmospheric Physics. Research Topics in Aerospace, edited by: Schumann, U., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-30183-4_30, 2012.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiß, A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T., Straume, A.-G., Fehr, T., von Bismark, J., Floberghagen, R., and Parrinello, T.: Initial assessment of the performance of the first Wind Lidar in space on Aeolus, EPJ Web Conf., 237, 01010, https://doi.org/10.1051/epjconf/202023701010, 2019.
Rennie, M. P.: An assessment of the expected quality of Aeolus Level-2B wind products, EPJ Web Conf., 176, 02015, https://doi.org/10.1051/epjconf/201817602015, 2018.
Rennie, M. P. and Isaksen, L.: The NWP impact of Aeolus Level-2B Winds at ECMWF, ECMWF Technical Memorandum 864, https://doi.org/10.21957/alift7mhr, 2020.
Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L. K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D. B.: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES, Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014, 2014.
Shipley S. T., Tracy, D. H., Eloranta, E. W., Tauger, J. T., Sroga, J. T., Roesler, F. L., and Weinman, J. A.: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, 1: Theory and instrumentation, Appl. Optics, 22, 3716–3724, 1983.
Stevens, B., Brogniez, H., Kiemle, C., Lacour, J.-L., Crevoisier, C., and Kiliani, J.: Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere, Surv. Geophys., 38, 1371–1397, https://doi.org/10.1007/s10712-017-9420-8, 2017.
Stith, J. L., Baumgardner, D., Haggerty, J., Hardesty, R. M., Lee, W., Lenschow, D., Pilewskie, P., Smith, P. L., Steiner, M., and Vömel, H.: 100 Years of Progress in Atmospheric Observing Systems, Meteor. Mon., 59, 2.1–2.55, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1, 2018.
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen, I., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart, R., Endemann, M., and Ingmann, P.: The Atmospheric Dynamics Mission for global wind field measurement, B. Am. Meteorol. Soc., 86, 73–87, 2005.
Straume, A.-G., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J., Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D., Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Nikolaus, I., Geiss, A., Flamant, P., Kanitz, T., Wernham, D., von Bismark, J., Bley, S., Fehr, T., Floberghagen, R., and Parrinello, T.: ESA's Space-based Doppler Wind Lidar Mission Aeolus – First Wind and Aerosol Product Assessment Results, in: International Laser Radar Conference, Hefei, China, 24–28 June 2019, 2019.
Sugimoto, N. and Lee, C. H.: Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths, Appl. Optics, 45, 7468–7474, 2006.
Tan, D. G. H., Andersson, E., De Kloe, J., Marseille, G-J., Stoffelen, A., Poli, P., Denneulin, M-L., Dabas, A., Huber, D., Reitebuch, O., Flamant, P., Le Rille, O., and Nett, H.: The ADM-Aeolus wind retrieval algorithms, Tellus A, 60, 191–205, https://doi.org/10.1111/j.1600-0870.2007.00285.x, 2008.
Tucker, S. C., Weimer, C. S., Baidar, S., and Hardesty, R. M.: The Optical Autocovariance Wind Lidar. Part I: OAWL Instrument Development and Demonstration, J. Atmos. Ocean. Tech., 35, 2079–2097, https://doi.org/10.1175/JTECH-D-18-0024.1. 2018.
Turk, F. J., Hristova-Veleva, S., Durden, S. L., Tanelli, S., Sy, O., Emmitt, G. D., Greco, S., and Zhang, S. Q.: Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX), Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, 2020.
Wang, Y., Williamson, C., Huynh, G., Emmitt, D., and Greco, S.: Airborne Doppler wind lidar data fusion with a diagnostic wind model, Laser Radar Technology and Applications XVII, Proc. SPIE, 8379, 83790 L (14 May 2012), https://doi.org/10.1117/12.918466, 2012.
Wirth, M., Fix, A., Mahnke, P., Schwarzer, H., Schrandt, F., and Ehret, G.: The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance, Appl. Phys. B-Lasers O., 96, 201, https://doi.org/10.1007/s00340-009-3365-7, 2009.
Witschas, B., Rahm, S., Dörnbrack, A., Wagner, J., and Rapp, M.: Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the Investigation of Orographically Induced Gravity Waves, J. Atmos. Ocean. Tech., 34, 1371–1386, https://doi.org/10.1175/JTECH-D-17-0021.1. 2017.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020.
Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., DiGirolamo, P., Schlüssel, P., Van Baelen, J., and Zus, F.: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev. Geophys., 53, 819–895, https://doi.org/10.1002/2014RG000476, 2015.
Zhang, J. A., Atlas, R., Emmitt, G. D., Bucci, L., and Ryan, K.: Airborne doppler wind lidar observations of the tropical cyclone boundary layer, Remote Sens., 10, 825, https://doi.org/10.3390/rs10060825, 2018.
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar...