Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4425-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-4425-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying insects, clouds, and precipitation using vertically pointing polarimetric radar Doppler velocity spectra
Christopher R. Williams
CORRESPONDING AUTHOR
Ann and H. J. Smead Aerospace Engineering Sciences Department,
University of Colorado, Boulder, CO, 80309, United States
Karen L. Johnson
Brookhaven National Laboratory, Upton, NY, 11973, United States
Scott E. Giangrande
Brookhaven National Laboratory, Upton, NY, 11973, United States
Joseph C. Hardin
Pacific Northwest National Laboratory, Richland, WA, 99354, United
States
Ruşen Öktem
Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, United States
Climate and Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, 94720, United States
David M. Romps
Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, United States
Climate and Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, 94720, United States
Related authors
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Tamanna Subba, Michael P. Jensen, Min Deng, Scott E. Giangrande, Mark C. Harvey, Ashish Singh, Die Wang, Maria Zawadowicz, and Chongai Kuang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2659, https://doi.org/10.5194/egusphere-2025-2659, 2025
Short summary
Short summary
This study highlights how sea breeze circulations influence aerosol concentrations and radiative effects in Southern Texas region. Using TRacking Aerosol Convection Interactions Experiment field campaign observations and model simulations, we show that sea breeze–aerosol interactions significantly impact cloud-relevant aerosols and regional air quality. These findings improve understanding of mesoscale controls on aerosols in complex coastal urban environments.
Andrew M. Sayer, Brian Cairns, Kirk D. Knobelspiesse, Luca Lelli, Chamara Rajapakshe, Scott E. Giangrande, Gareth E. Thomas, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2005, https://doi.org/10.5194/egusphere-2025-2005, 2025
Short summary
Short summary
Satellites can estimate cloud height in several ways: two include a thermal technique (colder clouds being higher up), and another looking at colours of light that oxygen in the atmosphere absorbs (darker clouds being lower down). It can also be measured (from ground or space) by radar and lidar. We compare satellite data we developed using the oxygen method with other estimates to help us refine our technique.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Kaiden Sookdar, Scott Edward Giangrande, John Rausch, Lihong Ma, Meng Wang, Dié Wang, Michael Jensen, Ching-Shu Hung, and J. Christine Chiu
EGUsphere, https://doi.org/10.5194/egusphere-2025-694, https://doi.org/10.5194/egusphere-2025-694, 2025
Short summary
Short summary
Photometer observations of stratocumulus cloud properties are evaluated for a multiyear archive. Retrievals for cloud optical depth, cloud droplet effective radius, and liquid water path show solid agreement with collocated references. Continental stratocumulus clouds sorted by cloud thickness indicate double the cloud optical depth and liquid water path of their marine counterparts, while exhibiting similar bulk cloud droplet effective radius.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022, https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary
Short summary
This work demonstrates the use of modern machine learning techniques to enhance the resolution of atmospheric chemistry simulations. We evaluate the schemes for an 8 x 10 increase in resolution and find that they perform substantially better than conventional methods. Methods are introduced to target machine learning methods towards this type of problem, most notably by ensuring they do not break known physical constraints.
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022, https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary
Short summary
We developed an Earth system model (ESM) diagnostics package to compare various types of aerosol properties simulated in ESMs with aircraft, ship, and surface measurements from six field campaigns across spatial scales. The diagnostics package is coded and organized to be flexible and modular for future extension to other field campaign datasets and adapted to higher-resolution model simulations. Future releases will include comprehensive cloud and aerosol–cloud interaction diagnostics.
Andrew Geiss and Joseph C. Hardin
Atmos. Meas. Tech., 14, 7729–7747, https://doi.org/10.5194/amt-14-7729-2021, https://doi.org/10.5194/amt-14-7729-2021, 2021
Short summary
Short summary
Radars can suffer from missing or poor-quality data regions for several reasons: beam blockage, instrument failure, and near-ground blind zones, etc. Here, we demonstrate how deep convolutional neural networks can be used for filling in radar-missing data regions and that they can significantly outperform conventional approaches in terms of realism and accuracy.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Sam J. Silva, Po-Lun Ma, Joseph C. Hardin, and Daniel Rothenberg
Geosci. Model Dev., 14, 3067–3077, https://doi.org/10.5194/gmd-14-3067-2021, https://doi.org/10.5194/gmd-14-3067-2021, 2021
Short summary
Short summary
The activation of aerosol into cloud droplets is an important but uncertain process in the Earth system. The physical and chemical interactions that govern this process are too computationally expensive to explicitly resolve in modern Earth system models. Here, we demonstrate how hybrid machine learning approaches can provide a potential path forward, enabling the representation of the more detailed physics and chemistry at a reduced computational cost while still retaining physical information.
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021, https://doi.org/10.5194/acp-21-6735-2021, 2021
Short summary
Short summary
This study suggests that there are two distinct modes driving diurnal precipitating convective clouds over the central Amazon. In the wet season, local factors such as turbulence and nighttime cloud coverage are the main controls of daily precipitation, while dry-season daily precipitation is modulated primarily by the mesoscale convective pattern. The results imply that models and parameterizations must consider different formulations based on the seasonal cycle to correctly resolve convection.
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Cited articles
Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement
Program, Phys. Today, 56, 38–44, https://doi.org/10.1063/1.1554135, 2003.
Atmospheric Radiation Measurement (ARM) user facility: Ceilometer (CEIL10M), updated hourly, 2018-01-01 to 2019-12-31, Southern Great Plains (SGP)
Central Facility, Lamont, OK (C1), compiled by: Morris, V., Zhang, D., and
Ermold, B., ARM Data Center [data set], https://doi.org/10.5439/1181954, 2010.
Atmospheric Radiation Measurement (ARM) user facility: Ka
ARM Zenith Radar (KAZRSPECCMASKMDCOPOL), updated hourly, 2018-01-01 to 2019-12-31, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Lindenmaier, I., Bharadwaj, N., Nelson, D., Isom, B., Hardin, J., Matthews, A., Wendler, T., and Castro, V., ARM Data Center [data set],
https://doi.org/10.5439/1095603, 2011a.
Atmospheric Radiation Measurement (ARM) user facility: Ka
ARM Zenith Radar (KAZRSPECCMASKMDXPOL), updated hourly, 2018-01-01 to 2019-12-31, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Lindenmaier, I., Bharadwaj, N., Nelson, D., Isom, B., Hardin, J., Matthews, A., Wendler, T., and Castro, V., ARM Data Center [data set],
https://doi.org/10.5439/1095604, 2011b.
Atmospheric Radiation Measurement (ARM) user facility: Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM Zenith Radars (ARSCLKAZR1KOLLIAS), updated hourly, 2018-01-01 to 2019-12-31, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Johnson, K. and
Scott, T., ARM Data Center,
https://doi.org/10.5439/1393437, 2014.
Atmospheric Radiation Measurement (ARM) user facility: Clouds Optically Gridded by Stereo (COGS) product (COGSPI), updated hourly, 2018-01-01 to
2019-12-31, Southern Great Plains (SGP) Southern Great Plains Network (N1),
compiled by: Gaustad, K., ARM Data Center,
https://doi.org/10.5439/1644322, 2017.
Baldini, L. and Gorcucci, E.: Identification of the melting layer through
dual-polarization radar measurements at vertical incidence, J. Atmos. Ocean. Technol., 23,
829-839, 2006.
Bauer-Pfundstein, M. R. and Görsdorf, U.: Target separation and
classification using cloud radar Doppler-spectra. 33rd Int. Conf. on Radar
Meteorology, 6–10 August 2007, Cairns, QLD, Australia, Amer. Meteor. Soc., 11B.2, available
at: https://ams.confex.com/ams/33Radar/techprogram/paper_123456.htm (last access: 26 March 2021), 2007.
Carter, D. A., Gage, K. S., Ecklund, W. L., Angevine, W. M., Johnston, P.
E., Riddle, A. C., Wilson, J. S., and Williams, C. R.: Developments in UHF
lower tropospheric wind profiling at NOAA's Aeronomy Laboratory, Radio
Sci., 30, 977–1001, 1995.
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Déqué, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Li, Z.-X., Liang, X.-Z., McAvaney, B. J., Meleshko, V. P., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., and Zhang, M.-H.: Intercomparison and interpretation of climate
feedback processes in 19 atmospheric general circulation models, J. Geophys.
Res., 95, 16601–16615, https://doi.org/10.1029/JD095iD10p16601, 1990.
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., and Martner, B. E.: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites, J. Appl. Meteor. Clim., 39, 645–665, https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2, 2000.
Drake, V. A., Hatty, S., Symons, C., and Wang, H.: Insect monitoring radar:
Maximizing performance and utility, Remote Sens., 12, 596,
https://doi.org/10.3390/rs12040596, 2020.
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D.,
Vinogradov, V., and Volkov, V.: A 35-GHz polarimetric Doppler radar for long-term
observations of cloud parameters – Description of system and data
processing, J. Atmos. Ocean. Tecnhol., 32, 675–690, 2015.
Gustafson, W. I., Vogelmann, A. M., Cheng, X., Endo, S., Krishna, B., Li, Z., Toto, T., and Xiao, H.: Recommendations for implementation of the LASSO workflow, edited by: Stafford, R., DOE Atmospheric Radiation Measurement Climate Research Facility.
DOE/SC-ARM-17-031, https://doi.org/10.2172/1406259, 2017.
Hildebrand, P. H. and Sekhon, R.: Objective determination of the noise level
in Doppler spectra, J. Appl. Meteorol., 13, 808–811,
https://doi.org/10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2, 1974.
Khandwalla, A., Sekelsky, S., Li, L., and Bergada, M.: Theory and observations between Ka-band and W-band to explain scattering differences between insects, Proc. 11th ARM Science Team Meeting, 19–23 March 2001, Atlanta, GA, USA, DOE ARM, available at: http://www.arm.gov/publications/proceedings/conf11/extended_abs/khandwalla_a.pdf (last access: 11 January 2021), 2001.
Khandwalla, A., Majurec, N., Sekelsky, S. M., Williams, C. R., and Gage, K. S.:
Characterization of radar boundary layer data collected during the 2001
multi-frequency radar IOP. Proc. 12th ARM Science Team Meeting, 8–12 April 2002, St.
Petersburg, FL, USA, ARM, available at:
http://www.arm.gov/publications/proceedings/conf12/extended_abs/khandwalla-a.pdf (last access: 11 January 2021), 2002.
Klingle, D. L., Smith, D. R., and Wolfson, M. M.: Gust front characteristics
as detected by Doppler radar, Mon. Weather Rev., 115, 905–918, 1987.
Kollias, P., Albrecht, B. A., and Marks Jr., F.: Why Mie? Accurate
observations of vertical air velocities and raindrops using a cloud radar,
Bull. Amer. Meteor. Soc., 83, 1471–1484, https://doi.org/10.1175/BAMS-83-10-1471,
2002.
Kollias, P., Clothiaux, E. E., Ackerman, T. P., Albrecht, B. A., Widener, K. B., Moran, K. P., Luke, E. P., Johnson, K. L., Bharadwaj, N., Mead, J. B.,
Miller, M. A., Verlinde, J., Marchand, R. T., and Mace, G. G.: Development and applications of ARM millimeter-wavelength cloud radars, Meteor. Monogr., 57, 17.1–17.19, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1,
2016.
LASSO: Large Eddy Simulation (LES) ARM Symbiotic Simulation and Observation
(LASSO) bundle browser – Visualization & access, available at:
https://adc.arm.gov/lassobrowser, last access: 1 May 2020.
Lhermitte, R. M.: Probing air motion by Doppler analysis of radar clear air
returns, J. Atmos. Sci., 23, 575–591,
https://doi.org/10.1175/1520-0469(1966)023<0575:PAMBDA>2.0.CO;2, 1966.
Lohmeier, S. P., Sekelsky, S. M., Firda, J. M., Sadowy, G. A., and
McIntosh, R. E.: Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric Cloud Profiling Radar System, IEEE Trans. Geosci. Remote Sens., 35, 256–270, 1997.
Luke, E. P., Kollias, P., Johnson, K. L., and Clothiaux, E. E.: A Technique for the
automatic detection of insect clutter in cloud radar returns, J. Atmos.
Ocean. Technol., 25, 1498–1513, https://doi.org/10.1175/2007JTECHA953.1, 2008.
Martner, B. E. and Moran, K. P.: Using cloud radar polarization measurements
to evaluate stratus cloud and insect echoes, J. Geophys. Res., 106,
4891–4897, https://doi.org/10.1029/2000JD900623, 2001.
Mather, J. H. and Voyles, J. W.: The ARM Climate Research Facility: A
review of structure and capabilities, Bull. Amer. Meteor. Soc., 94, 377–392,
https://doi.org/10.1175/BAMS-D-11-00218.1, 2013.
Matrosov, S. Y.: Theoretical study of radar polarization parameters obtained
from cirrus clouds, J. Atmos. Sci., 48, 1062–1070, https://doi.org/10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2, 1991.
Moran, K. P., Martner, B. E., Post, M. J., Kropfli, R. A., Welsh, D. C., and Widener, K.
B.: An unattended cloud-profiling radar for use in climate research,
Bull. Amer. Meteor. Soc., 79, 443–455,
https://doi.org/10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2, 1998.
Morris, V.: Ceilmeter Instrument Handbook. DOE Atmospheric Radiation
Mission (ARM), report DOE/SE-ARM-TR-020, available at:
https://www.arm.gov/publications/tech_reports/handbooks/ceil_handbook.pdf (last access: 27 March 2021), 2016.
Mueller, E. A. and Larkin, R. P.: Insects observed using dual polarization
radar, J. Atmos. Oceanic Technol., 2, 49–54, https://doi.org/10.1175/1520-0426(1985)002<0049:IOUDPR>2.0.CO;2, 1985.
Nansen, C. and Elliott, N.: Remote sensing and reflectance profiling in
Entomology, Ann. Rev. Entomol., 61, 139–158,
https://doi.org/10.1146/annurev-ento-010715-023834, 2016.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R.,
Ahmad, E., and Hartmann, D.: Cloud radiative forcing and climate: Results from
the Earth Radiation Budget Experiment, Science, 243, 57–63,
https://doi.org/10.1126/science.243.4887.57, 1989.
Reinking, R. F., Matrosov, S. Y., Bruintjes, R. T., and Martner, B. E.:
Identification of hydrometeors with elliptical and linear polarization
Ka-band radar, J. Appl. Meteor., 36, 322–339, https://doi.org/10.1175/1520-0450(1997)036<0322:IOHWEA>2.0.CO;2, 1997.
Riley, J. R.: Remote sensing in entomology, Ann. Rev. Entomol., 34, 247–271,
1989.
Romps, D. M. and Öktem, R.: Observing clouds in 4D with multiview
stereophotogrammetry, Bull. Amer. Meteor. Soc., 99, 2575–2586,
https://doi.org/10.1175/BAMS-D-18-0029.1, 2018.
Sekelsky, S. M., Li, L., Calloway, J., McIntosh, R. E., Miller, M. A.,
Clothiaux, E. E., Haimov, S., Mace, G. C., and Sassen, K.: Comparison of
millimeter-wave cloud radar measurements for the fall 1997 cloud IOP, in:
Proceedings of 8th ARM Science Team Meeting, 23–27 March 1998, Tucson, Ariz., USA, Dep. of Energy, 671–675, 1998.
Westbrook, J. K., Eyster, R. S., and Wolf, W. W.: WSR-88D Doppler radar
detection of corn earworm moth migration, Int. J. Biometeorol., 58, 931–940, https://doi.org/10.1007/s00484-013-0676-5, 2014.
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar (KAZR)
Handbook. DOE Atmospheric Radiation Mission (ARM), report DOE/SC-ARM/TR-106,
available at:
https://www.arm.gov/publications/tech_reports/handbooks/kazr_handbook.pdf (last access: 27 March 2021), 2012.
Williams, C. R.: KAZRMASKS: KAZR hydrometeor and insect masks, DOE
Atmospheric Radiation Measurement (ARM) Archive [data set],
https://doi.org/10.5439/1772490, 2021.
Williams, C. R. and Gage, K. S.: Raindrop size distribution variability estimated using ensemble statistics, Ann. Geophys., 27, 555–567, https://doi.org/10.5194/angeo-27-555-2009, 2009.
Short summary
In addition to detecting clouds, vertically pointing cloud radars detect individual insects passing over head. If these insects are not identified and removed from raw observations, then radar-derived cloud properties will be contaminated. This work identifies clouds in radar observations due to their continuous and smooth structure in time, height, and velocity. Cloud masks are produced that identify cloud vertical structure that are free of insect contamination.
In addition to detecting clouds, vertically pointing cloud radars detect individual insects...