Articles | Volume 14, issue 6
Atmos. Meas. Tech., 14, 4565–4574, 2021

Special issue: Tropospheric profiling (ISTP11) (AMT/ACP inter-journal SI)

Atmos. Meas. Tech., 14, 4565–4574, 2021
Research article
21 Jun 2021
Research article | 21 Jun 2021

Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation

Andreas Foth et al.

Related authors

Identifying cloud droplets beyond lidar attenuation from vertically-pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech. Discuss.,,, 2022
Preprint under review for AMT
Short summary
Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807,,, 2021
Short summary
Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015,,, 2020
Short summary
Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° S and 70.9° W), during ALPACA
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233,,, 2019
Short summary
Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer
Andreas Foth and Bernhard Pospichal
Atmos. Meas. Tech., 10, 3325–3344,,, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704,,, 2022
Short summary
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592,,, 2022
Short summary
On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479,,, 2022
Short summary
Quantification of lightning-produced NOx over the Pyrenees and the Ebro Valley by using different TROPOMI-NO2 and cloud research products
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351,,, 2022
Short summary
Sensitivity analysis of attenuation in convective rainfall at X-band frequency using the mountain reference technique
Guy Delrieu, Anil Kumar Khanal, Frédéric Cazenave, and Brice Boudevillain
Atmos. Meas. Tech., 15, 3297–3314,,, 2022
Short summary

Cited articles

Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic indexes for forecasting thunderstorms in southern sweden, Meteorol. Mag., 118, 141–146, 1989. a
Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain Reevaporation, Boundary Layer–Convection Interactions, and Pacific Rainfall Patterns in an AGCM, J. Atmos. Sci., 63, 3383–3403,, 2006. a
Caracciolo, C., Prodi, F., Battaglia, A., and Porcu', F.: Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm, Atmos. Res., 80, 165–186,, 2006. a
Cloud and Precipitation Exploration Laboratory (CPEX-LAB): JOYCE-CF, available at:, last access: 18 June 2021. a
Short summary
In this paper, we present two micro rain radar-based approaches to discriminate between stratiform and convective precipitation. One is based on probability density functions and the other one is an artificial neural network classification. Both methods agree well, giving similar results. However, the results of the artificial neural network are more reasonable since it is also able to distinguish an inconclusive class, in turn making the stratiform and convective classes more reliable.