Articles | Volume 14, issue 7
Atmos. Meas. Tech., 14, 5127–5138, 2021
https://doi.org/10.5194/amt-14-5127-2021
Atmos. Meas. Tech., 14, 5127–5138, 2021
https://doi.org/10.5194/amt-14-5127-2021

Research article 28 Jul 2021

Research article | 28 Jul 2021

GNSS-based water vapor estimation and validation during the MOSAiC expedition

Benjamin Männel et al.

Related authors

Validation of tropospheric ties at the test setup GNSS co-location site Potsdam
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-87,https://doi.org/10.5194/amt-2021-87, 2021
Revised manuscript not accepted
Short summary
An analysis of a priori and empirical solar radiation pressure models for GPS satellites
Xiao Chang, Benjamin Männel, and Harald Schuh
Adv. Geosci., 55, 33–45, https://doi.org/10.5194/adgeo-55-33-2021,https://doi.org/10.5194/adgeo-55-33-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric tomography using the Nordic Meteor Radar Cluster and Chilean Observation Network De Meteor Radars: network details and 3D-Var retrieval
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021,https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Using vertical phase differences to better resolve 3D gravity wave structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021,https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
High-temporal-resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
Tong Ning and Gunnar Elgered
Atmos. Meas. Tech., 14, 5593–5605, https://doi.org/10.5194/amt-14-5593-2021,https://doi.org/10.5194/amt-14-5593-2021, 2021
Short summary
Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Meteor radar observations of polar mesospheric summer echoes over Svalbard
Joel P. Younger, Iain M. Reid, Chris L. Adami, Chris M. Hall, and Masaki Tsutsumi
Atmos. Meas. Tech., 14, 5015–5027, https://doi.org/10.5194/amt-14-5015-2021,https://doi.org/10.5194/amt-14-5015-2021, 2021
Short summary

Cited articles

Alfred Wegener Institute: Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute, JLSRF, 3, A119, https://doi.org/10.17815/jlsrf-3-163, 2017. a
Alshawaf, F., Zus, F., Balidakis, K., Deng, Z., Hoseini, M., Dick, G., and Wickert, J.: On the Statistical Significance of Climatic Trends Estimated From GPS Tropospheric Time Series, J. Geophys. Res., 123, 10967–10990, https://doi.org/10.1029/2018JD028703, 2018. a
Balidakis, K., Nilsson, T., Zus, F., Glaser, S., Heinkelmann, R., Deng, Z., and Schuh, H.: Estimating Integrated Water Vapor Trends From VLBI, GPS, and Numerical Weather Models: Sensitivity to Tropospheric Parameterization, J. Geophys. Res.-Atmos., 123, 6356–6372, https://doi.org/10.1029/2017JD028049, 2018. a
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol. Climatol., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2​​​​​​​, 1994. a
Böhm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and VLBI from European Centre for medium-range weather forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006. a
Download
Short summary
Within the MOSAiC expedition, GNSS was used to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked data, coordinates and hourly zenith total delays (ZTDs) were determined using kinematic precise point positioning. The derived ZTD values agree within few millimeters with ERA5 and terrestrial GNSS and VLBI stations. The derived integrated water vapor corresponds to the frequently launched radiosondes (0.08 ± 0.04 kg m−2, rms of the differences of 1.47 kg m−2).