Articles | Volume 14, issue 10
https://doi.org/10.5194/amt-14-6885-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-6885-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Nicholas J. Kedzuf
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80523, USA
J. Christine Chiu
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80523, USA
V. Chandrasekar
Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, CO 80523, USA
Sounak Biswas
Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, CO 80523, USA
Shashank S. Joshil
Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, CO 80523, USA
Yinghui Lu
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA 16802, USA
Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, PA 16802, USA
Peter Jan van Leeuwen
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80523, USA
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Christopher Westbrook
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Yann Blanchard
ESCER Centre, Department of Earth and Atmospheric Sciences, University of Québec at Montréal, Montréal, Quebec, H3C 3P8, Canada
Sebastian O'Shea
Department of Earth and Environmental Sciences, University of
Manchester, Manchester, M13 9PL, UK
Related authors
No articles found.
Karina McCusker, Chris Westbrook, Alessandro Battaglia, Kamil Mroz, Benjamin M. Courtier, Peter G. Huggard, Hui Wang, Richard Reeves, Christopher J. Walden, Richard Cotton, Stuart Fox, and Anthony J. Baran
EGUsphere, https://doi.org/10.5194/egusphere-2025-3974, https://doi.org/10.5194/egusphere-2025-3974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This work presents the first known retrievals of ice cloud and snowfall properties using G-band radar, representing a major step forward in the use of high-frequency radar for atmospheric remote sensing. We present theory and simulations to show that ice water content (IWC) and snowfall rate (S) can be retrieved efficiently with a single frequency G-band radar if the mass of a wavelength-sized particle is known or can be assumed, while details of the particle size distribution are not required.
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162, https://doi.org/10.5194/essd-2025-162, 2025
Preprint under review for ESSD
Short summary
Short summary
A GPM Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025, https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary
Short summary
Water is a precious resource, and it is essential to monitor and predict the current and future occurrence of precipitation-producing clouds. We investigate the cloud characteristics related to precipitation using several cloud cases in the United Arab Emirates with data from aircraft measurements, satellite observations, and weather radar observations. This study provides scientific support for the development of an applicable framework to examine cloud precipitation processes.
Marc Schneebeli, Andreas Leuenberger, Philipp J. Schmid, Jacopo Grazioli, Heather Corden, Alexis Berne, Patrick Kennedy, Jim George, Francesc Junyent, and V. Chandrasekar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1702, https://doi.org/10.5194/egusphere-2025-1702, 2025
Short summary
Short summary
A new technique for the end-to-end calibration of weather radars is introduced. Highly precise artificial radar targets are generated with a radar target simulator and serve as a calibration reference for weather radar observables like reflectivity and Doppler velocity. The system allows to investigate and correct any biases associated with weather radar observations.
Kaiden Sookdar, Scott Edward Giangrande, John Rausch, Lihong Ma, Meng Wang, Dié Wang, Michael Jensen, Ching-Shu Hung, and J. Christine Chiu
EGUsphere, https://doi.org/10.5194/egusphere-2025-694, https://doi.org/10.5194/egusphere-2025-694, 2025
Short summary
Short summary
Photometer observations of stratocumulus cloud properties are evaluated for a multiyear archive. Retrievals for cloud optical depth, cloud droplet effective radius, and liquid water path show solid agreement with collocated references. Continental stratocumulus clouds sorted by cloud thickness indicate double the cloud optical depth and liquid water path of their marine counterparts, while exhibiting similar bulk cloud droplet effective radius.
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024, https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Short summary
This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal.
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022, https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Short summary
The outputs from Earth system models are optimally combined with satellite observations to produce accurate forecasts through a process called data assimilation. Many existing data assimilation methodologies have some assumptions regarding the shape of the probability distributions of model output and observations, which results in forecast inaccuracies. In this paper, we test the effectiveness of a newly proposed methodology that relaxes such assumptions about high-dimensional models.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman
Nonlin. Processes Geophys., 28, 295–309, https://doi.org/10.5194/npg-28-295-2021, https://doi.org/10.5194/npg-28-295-2021, 2021
Short summary
Short summary
Data assimilation aims to improve hydrologic and weather forecasts by combining available information from Earth system models and observations. The classical approaches to data assimilation usually proceed with some preconceived assumptions about the shape of their probability distributions. As a result, when such assumptions are invalid, the forecast accuracy suffers. In the proposed methodology, we relax such assumptions and demonstrate improved performance.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020, https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Cited articles
Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7, 3007–3022, https://doi.org/10.5194/amt-7-3007-2014, 2014.
Aydin, K. and Seliga,T. A.: Radar Polarimetric Backscattering Properties of
Conical Graupel, J. Atmos. Sci., 41, 1887–1892,
https://doi.org/10.1175/1520-0469(1984)041<1887:rpbpoc>2.0.co;2,
1984.
Baran, A. J., Connolly, P., and Lee, C.: Testing an ensemble model of cirrus
ice crystals using midlatitude in situ estimates of ice water content,
volume extinction coefficient and the total solar optical depth, J. Quant.
Spectrosc. Ra., 110, 1579–1598, https://doi.org/10.1016/j.jqsrt.2009.02.021, 2009.
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019.
Bennett, L.: NCAS mobile X-band radar scan data from 1st November 2016 to
4th June 2018 deployed on long-term observations at the Chilbolton Facility
for Atmospheric and Radio Research (CFARR), Hampshire, UK, Centre for
Environmental Data Analysis [data set], https://doi.org/10.5285/ffc9ed384aea471dab35901cf62f70be,
2020.
Botta, G., Aydin, K., Verlinde, J., Avramov, A. E., Ackerman, A. S.,
Fridlind, A. M., McFarquhar, G. M., and Wolde, M.: Millimeter wave
scattering from ice crystals and their aggregates: Comparing cloud model
simulations with X- and Ka-band radar measurements, J. Geophys. Res., 116,
D00T04, https://doi.org/10.1029/2011JD015909, 2011.
Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler, S. A.: Microwave and submillimeter wave scattering of oriented ice particles, Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, 2020.
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar:
principles and applications, Cambridge University Press, Cambridge, UK, 2001.
Chiu, J. C.: cjchiurams/PICASSO-IceSnowProperties: v1.0.0 (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5590209, 2021.
Craven, P. and Wahba, G.: Smoothing noisy data with spline functions:
Estimating the correct degree of smoothing by the method of generalized
cross-validation, Numer. Math., 31, 377–403, 1979.
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–273, https://doi.org/10.5194/acp-11-257-2011, 2011.
Delanoë, J., Protat, A., Testud, J., Bouniol, D., Heymsfield, A. J.,
Bansemer, A., Brown, P. R. A., and Forbes, R. M.: Statistical properties of
the normalized ice particle size distribution, J. Geophys.
Res.-Atmos., 110, D10201, https://doi.org/10.1029/2004jd005405, 2005.
Delanoë, J. M. E., Heymsfield, A. J., Protat, A., Bansemer, A., and
Hogan, R. J.: Normalized particle size distribution for remote sensing
application, J. Geophys. Res.-Atmos., 119, 4204–4227,
https://doi.org/10.1002/2013jd020700, 2014.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M., Eidhammer, T., and Rogers, D.: Predicting
global atmospheric ice nuclei distributions and their impacts on climate,
Proc. Natl. Acad. Sci. USA, 107, 11217–11222, 2010.
DeMott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., Leisner, T., Bundke, U., Klein, H., and Kanji, Z. A.: Resurgence in ice nuclei measurement research, B. Am.
Meteorol. Soc., 92, 1623–1635, https://doi.org/10.1175/2011bams3119.1, 2011.
Erfani, E. and Mitchell, D. L.: Growth of ice particle mass and projected area during riming, Atmos. Chem. Phys., 17, 1241–1257, https://doi.org/10.5194/acp-17-1241-2017, 2017.
Eriksson, P., Ekelund, R., Mendrok, J., Brath, M., Lemke, O., and Buehler, S. A.: A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths, Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, 2018.
Evensen, G., Raanes, P. N., Styrodal, A. S., and Hove, J.: Efficient
implementation of an iterative Ensemble Smoother for data assimilation and
reservoir history matching, Front. Appl. Math. Stat., 5, 47, https://doi.org/10.3389/fams.2019.00047, 2019.
Facility for Airborne Atmospheric Measurements (FAAM), Natural Environment Research Council, and Met Office: FAAM C081 PICASSO flight: Airborne atmospheric measurements from core and non-core instrument suites on board the BAE-146 aircraft, Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/64c9279112bb4e0cadb6adaebf1141eb (last access: 25 February 2021), 2018.
Field, P. R. and Heymsfield, A. J.: Importance of snow to global
precipitation, Geophys. Res. Lett., 42, 9512–9520,
https://doi.org/10.1002/2015gl065497, 2015.
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton,
T. W., and Cotton, R. J.: Parametrization of ice-particle size distributions
for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131, 1997–2017,
https://doi.org/10.1256/qj.04.134, 2005.
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C.,
Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T.,
Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P.,
Flossman, A., Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z. A., Korolev,
A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G.,
Phillips, V., Stith, J., and Sullivan, S.: Secondary ice production: current
state of the science and recommendations for the future, Meteor. Mon., 58,
7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017.
Fielding, M. D., Chiu, J. C., Hogan, R. J., and Feingold, G.: A novel
ensemble method for retrieving properties of warm cloud in 3-D using
ground-based scanning radar and zenith radiances, J. Geophys. Res.-Atmos.,
119, 10912–10930, 2014.
Fielding, M. D., Chiu, J. C., Hogan, R. J., Feingold, G., Eloranta, E., O'Connor, E. J., and Cadeddu, M. P.: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances, Atmos. Meas. Tech., 8, 2663–2683, https://doi.org/10.5194/amt-8-2663-2015, 2015.
Garrett, T. J., Yuter, S. E., Fallgatter, C., Shkurko, K., Rhodes, S. R.,
and Endries, J. L.: Orientations and aspect ratios of falling snow, Geophys.
Res. Lett., 42, 4617–4622, https://doi.org/10.1002/2015gl064040, 2015.
Grazioli, J., Lloyd, G., Panziera, L., Hoyle, C. R., Connolly, P. J., Henneberger, J., and Berne, A.: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014, Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, 2015.
Gultepe, I., Heymsfield, A. J., Field, P. R., and Axisa, D.: Ice-phase
precipitation, Meteor. Mon., 58, 6.1–6.36, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0013.1, 2017.
Heymsfield, A. J., Schmitt, C., Bansemer, A., and Twohy, C. H.: Improved
representation of ice particle masses based on observations in natural
clouds, J. Atmos. Scie., 67, 3303–3318, https://doi.org/10.1175/2010jas3507.1, 2010.
Hogan, R. J., Field, P. R., Illingworth, A. J., Cotton, R. J., and
Choularton, T. W.: Properties of embedded convection in warm-frontal
mixed-phase cloud from aircraft and polarimetric radar, Q. J. Roy. Meteor.
Soc., 128, 451–476, https://doi.org/10.1256/003590002321042054, 2002.
Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C., Heymsfield, A. J.,
and Eastment, J. D.: Radar scattering from ice aggregates using the
horizontally aligned oblate spheroid approximation. J. Appl. Meteorol.
Clim., 51, 655–671, https://doi.org/10.1175/JAMC-D-11-074.1, 2012.
Hong, G., Yang, P., Baum, B. A., Heymsfield, A. J., Weng, F., Liu, Q.,
Heygster, G., and Buehler, S. A.: Scattering database in the millimeter and
submillimeter wave range of 100–1000 GHz for nonspherical ice particles, J.
Geophys. Res., 114, D06201, https://doi.org/10.1029/2008jd010451, 2009.
Hubbert, J. C., Ellis, S. M., Chang, W.-Y., Rutledge, S., and Dixon, M.:
Modeling and interpretation of S-Band ice crystal depolarization signatures
from data obtained by simultaneously transmitting horizontally and
vertically polarized fields, J. Appl. Meteorol. Clim., 53, 1659–1677,
https://doi.org/10.1175/jamc-d-13-0158.1, 2014.
Jiang, Z., Oue, M., Verlinde, J., Clothiaux, E. E., Aydin, K., Botta, G.,
and Lu, Y.: What can we conclude about the real aspect ratios of ice
particle aggregates from two-dimensional images?, J. Appl. Meteorol.
Clim., 56, 725–734, https://doi.org/10.1175/jamc-d-16-0248.1, 2017.
Jung, Y., Xue, M., and Zhang, G.: Simulations of polarimetric radar
signatures of a supercell storm using a two-moment bulk microphysics
scheme, J. Appl. Meteorol. Clim., 49, 146–163, https://doi.org/10.1175/2009jamc2178.1,
2010.
Kajikawa, M.: Observation of the falling motion of early snow-flakes. Part
II: On the variation of falling velocity, J. Meteorol. Soc. Jpn., 67,
731–738, 1989.
Keat, W. J. and Westbrook, C. D.: Revealing layers of pristine oriented
crystals embedded within deep ice clouds using differential reflectivity and
the copolar correlation coefficient, J. Geophys. Res.-Atmos., 122, 11737–11759, https://doi.org/10.1002/2017jd026754, 2017.
Keat, W. J., Westbrook, C. D., and Illingworth, A. J.: High-precision
measurements of the copolar correlation coefficient: Non-Gaussian errors and
retrieval of the dispersion parameter μ in rainfall, J. Appl. Meteorol.
Clim., 55, 1615–1632, https://doi.org/10.1175/jamc-d-15-0272.1, 2016.
Kennedy, P. C. and Rutledge, S. A.: S-Band dual-polarization radar
observations of winter storms, J. Appl. Meteorol. Clim., 50, 844–858,
https://doi.org/10.1175/2010jamc2558.1, 2011.
Kneifel, S., vonLerber, A., Tiira, J., Moisseev, D., Kollias, P., and
Leinonen, J.: Observed relations between snowfall microphysics and
triple-frequency radar measurements, J. Geophys. Res.-Atmos., 120,
6034–6055, https://doi.org/10.1002/2015JD023156, 2015.
Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang,
Z., Williams, E., Abel, S. J., Axisa, D., Borrmann, S., Crosier, J., Fugal,
J., Kramer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch,
M.: Mixed-phase clouds: progress and challenges, Meteor. Mon., 58,
5.1–5.50, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1, 2017.
Korolev, A., Heckman, I., Wolde, M., Ackerman, A. S., Fridlind, A. M., Ladino, L. A., Lawson, R. P., Milbrandt, J., and Williams, E.: A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391–1429, https://doi.org/10.5194/acp-20-1391-2020, 2020.
Kumjian, M.: Principles and applications of dual-polarization weather radar.
Part I: Description of the polarimetric radar variables, J. Operational
Meteor., 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013.
Kuo, K.-S., Olson, W. S., Johnson, B. T., Grecu, M., Tian, L., Clune, T. L.,
Aartsen, B. H. V., Heymsfield, A. J., Liao, L., and Meneghini, R.: The
Microwave radiative properties of falling snow derived from nonspherical ice
particle models. Part I: An extensive database of simulated pristine
crystals and aggregate particles, and their scattering properties, J. Appl.
Meteorol. Clim., 55, 691–708, https://doi.org/10.1175/jamc-d-15-0130.1, 2016.
Li, J.–L. F., Forbes, R. M., Waliser, D. E., Stephens, G., and Lee, S.:
Characterizing the radiative impacts of precipitating snow in the ECMWF
integrated forecast system global model, J. Geophys. Res.-Atmos., 119,
9626–9637, https://doi.org/10.1002/2014JD021450, 2014.
Liu, G.: A database of microwave single-scattering properties for
nonspherical ice particles, B. Am. Meteorol. Soc., 89, 1563–1570,
https://doi.org/10.1175/2008bams2486.1, 2008.
Lu, Y., Aydin, K., Clothiaux, E. E., and Verlinde, J.: Retrieving cloud ice
water content using millimeter- and centimeter-wavelength radar
polarimetric observables, J. Appl. Meteorol. Clim., 54, 596–604, https://doi.org/10.1175/JAMC-D-14-0169.1, 2015.
Lu, Y., Jiang, Z., Aydin, K., Verlinde, J., Clothiaux, E. E., and Botta, G.: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths, Atmos. Meas. Tech., 9, 5119–5134, https://doi.org/10.5194/amt-9-5119-2016, 2016 (data available at: https://adc.arm.gov/discovery/#/results/instrument_class_code::icepart-mod, last access: 1 October 2018).
Mason, S. L., Chiu, C. J., Hogan, R. J., Moisseev, D., and Kneifel, S.:
Retrievals of riming and snow density from vertically pointing Doppler
radars, J. Geophys. Res.-Atmos., 123, 13807–13834, https://doi.org/10.1029/2018JD028603, 2018.
Matsui, T., Dolan, B., Rutledge, S. A., Tao, W. K., Iguchi, T., Barnum, J.,
and Lang, S. E.: POLARRIS: A POLArimetric Radar Retrieval and Instrument
Simulator, J. Geophys. Res.-Atmos, 124, 4634–4657,
https://doi.org/10.1029/2018jd028317, 2019.
Mitchell, D. L.: Use of mass- and area-dimensional power laws for
determining precipitation particle terminal velocities, J. Atmos. Sci., 53,
1710–1723, https://doi.org/10.1175/1520-0469(1996)053<1710:uomaad>2.0.co;2, 1996.
Mitchell, D. L. and Heymsfield, A. J.: Refinements in the treatment of ice
particle terminal velocities, highlighting aggregates, J. Atmos. Sci., 62,
1637–1644, https://doi.org/10.1175/JAS3413.1, 2005.
Moisseev, D. N., Lautaportti, S., Tyynela, J., and Lim, S.:
Dual-polarization radar signatures in snowstorms: Role of snowflake
aggregation, J. Geophys. Res.-Atmos., 120, 12644–12655,
https://doi.org/10.1002/2015jd023884, 2015.
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W.,
Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A.,
Pawlowska, H., Posselt, D. J., Prat, O. P., Reimel, K. J., Shima, S., van
Diedenhoven, B., and Xue, L.: Confronting the challenge of modelling cloud
and precipitation microphysics, J. Adv. Model. Earth Sy., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.
Mulmenstadt, J., Sourdeval, O., Delanoe, J., and Quass, J.: Frequency of
occurrence of rain from liquid-, mixed-, and ice-phase clouds derived
from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502–6509, https://doi.org/10.1002/2015GL064604, 2015.
Murphy, A. M., Ryzhkov, A., and Zhang, P.: Columnar Vertical Profile (CVP)
Methodology for validating polarimetric radar retrievals in ice using in
situ aircraft measurements, J. Atmos. Ocean. Tech., 37, 1623–1642,
https://doi.org/10.1175/jtech-d-20-0011.1, 2020.
Neely III, R. R., Bennett, L., Blyth, A., Collier, C., Dufton, D., Groves, J., Walker, D., Walden, C., Bradford, J., Brooks, B., Addison, F. I., Nicol, J., and Pickering, B.: The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol), Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018, 2018.
O'Shea, S., Crosier, J., Dorsey, J., Gallagher, L., Schledewitz, W., Bower, K., Schlenczek, O., Borrmann, S., Cotton, R., Westbrook, C., and Ulanowski, Z.: Characterising optical array particle imaging probes: implications for small-ice-crystal observations, Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, 2021.
Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward exploring the
synergy between cloud radar polarimetry and Doppler spectral analysis in
deep cold precipitating systems in the Arctic, J. Geophys.
Res.-Atmos., 123, 2797–2815, https://doi.org/10.1002/2017jd027717, 2018.
Protat, A., Delanoë, J., Bouniol, D., Heymsfield, A. J., Bansemer, A.,
and Brown, P.: Evaluation of ice water content retrievals from cloud radar
reflectivity and temperature using a large airborne in situ microphysical
database, J. Appl. Meteorol. Clim., 46, 557–572, https://doi.org/10.1175/jam2488.1,
2007.
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric radar
observation operator for a cloud model with spectral microphysics, J. Appl.
Meteorol. Clim., 50, 873–894, https://doi.org/10.1175/2010jamc2363.1, 2011.
Ryzhkov, A. V. and Zrnic, D. S.: Polarimetric microphysical retrievals, in
Radar Polarimetry for Weather Observations, Springer, 435–464,
https://doi.org/10.1007/978-3-030-05093-1_11, 2019.
Ryzhkov, A. V., Zrnic, D. S., and Gordon, B. A.: Polarimetric method for ice
water content determination, J. Appl. Meteorol. Clim., 37, 125–134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2, 1998.
Schrom, R. S., Kumjian, M. R., and Lu, Y.: Polarimetric radar signatures of
dendritic growth zones within Colorado winter storms, J. Appl. Meteorol.
Clim., 54, 2365–2388, https://doi.org/10.1175/JAMC-D-15-0004.1, 2015.
Seliga, T. A., Bringi, V. N., and Al-Khatib, H. H.: A preliminary study of
comparative measurements of rainfall rate using the differential
reflectivity radar technique and a rain gage Network, J. Appl.
Meteorol., 20, 1362–1368, 1981.
Spek, A. L. J., Unal, C. M. H., Moisseev, D. N., Russchenberg, H. W. J.,
Chandrasekar, V., and Dufournet, Y.: A new technique to categorize and
retrieve the microphysical properties of ice particles above the melting
layer using radar dual-polarization spectral analysis, J. Atmos. Ocean.
Tech., 25, 482–497, https://doi.org/10.1175/2007jtecha944.1, 2008.
Szyrmer, W. and Zawadzki, I.: Snow studies. part II: average relationship
between mass of snowflakes and their terminal fall velocity, J. Atmos. Sci.,
67, 3319–3335, https://doi.org/10.1175/2010JAS3390.1, 2010.
Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.: The concept of
“normalized” distribution to describe raindrop spectra: A tool for cloud
physics and cloud remote sensing, J. Appl. Meteorol., 40, 1118–1140,
https://doi.org/10.1175/1520-0450(2001)040<1118:tcondt>2.0.co;2,
2001.
Tiira, J., Moisseev, D. N., von Lerber, A., Ori, D., Tokay, A., Bliven, L. F., and Petersen, W.: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland, Atmos. Meas. Tech., 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016, 2016.
Van Leeuwen, P. J.: A consistent interpretation of the stochastic version of
the Ensemble Kalman Filter, Q. J. Royal Met. Soc., 146, 2815–2825, https://doi.org/10.1002/qj.3819, 2020.
Vivekanandan, J., Martner, B., Politovich, M., and Zhang, G.: Retrieval of
atmospheric liquid and ice characteristics using dual-wavelength radar
observations, IEEE T. Geosci. Remote, 37, 2325–2334, https://doi.org/10.1109/36.789629,
1999.
Wang, Y. and Chandrasekar, V.: Algorithm for estimation of the specific
differential phase, J. Atmos. Ocean. Tech., 26, 2565–2578,
https://doi.org/10.1175/2009jtecha1358.1, 2009.
Xu, Y.-L.: Electromagnetic scattering by an aggregate of spheres, Appl.
Optics, 34, 4573, https://doi.org/10.1364/ao.34.004573, 1995.
Yurkin, M. A. and Hoekstra, A. G.: The discrete-dipole-approximation code
ADDA: Capabilities and known limitations, J. Quant. Spectrosc. Ra., 112,
2234–2247, https://doi.org/10.1016/j.jqsrt.2011.01.031, 2011.
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Ice clouds play a key role in our climate system due to their strong controls on precipitation...