Articles | Volume 14, issue 10
Atmos. Meas. Tech., 14, 6885–6904, 2021
https://doi.org/10.5194/amt-14-6885-2021
Atmos. Meas. Tech., 14, 6885–6904, 2021
https://doi.org/10.5194/amt-14-6885-2021
Research article
26 Oct 2021
Research article | 26 Oct 2021

Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations

Nicholas J. Kedzuf et al.

Related authors

Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022,https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
Concetta Di Mauro​​​​​​​, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021,https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Ensemble Riemannian data assimilation over the Wasserstein space
Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman
Nonlin. Processes Geophys., 28, 295–309, https://doi.org/10.5194/npg-28-295-2021,https://doi.org/10.5194/npg-28-295-2021, 2021
Short summary
Characterising optical array particle imaging probes: implications for small-ice-crystal observations
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021,https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021,https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022,https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022,https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary
Applying self-supervised learning for semantic cloud segmentation of all-sky images
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809, https://doi.org/10.5194/amt-15-797-2022,https://doi.org/10.5194/amt-15-797-2022, 2022
Short summary
Coincident in situ and triple-frequency radar airborne observations in the Arctic
Cuong M. Nguyen, Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer
Atmos. Meas. Tech., 15, 775–795, https://doi.org/10.5194/amt-15-775-2022,https://doi.org/10.5194/amt-15-775-2022, 2022
Short summary
Analysis of improvements in MOPITT observational coverage over Canada
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022,https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary

Cited articles

Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7, 3007–3022, https://doi.org/10.5194/amt-7-3007-2014, 2014. 
Aydin, K. and Seliga,T. A.: Radar Polarimetric Backscattering Properties of Conical Graupel, J. Atmos. Sci., 41, 1887–1892, https://doi.org/10.1175/1520-0469(1984)041<1887:rpbpoc>2.0.co;2, 1984. 
Baran, A. J., Connolly, P., and Lee, C.: Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of ice water content, volume extinction coefficient and the total solar optical depth, J. Quant. Spectrosc. Ra., 110, 1579–1598, https://doi.org/10.1016/j.jqsrt.2009.02.021, 2009. 
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. 
Bennett, L.: NCAS mobile X-band radar scan data from 1st November 2016 to 4th June 2018 deployed on long-term observations at the Chilbolton Facility for Atmospheric and Radio Research (CFARR), Hampshire, UK, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/ffc9ed384aea471dab35901cf62f70be, 2020. 
Download
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.