Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
Haystack Observatory, Massachusetts Institute of Technology, Westford, MA 01886, USA
Jorge L. Chau
Leibniz Institute of Atmospheric Physics, University of Rostock, 18225 Kühlungsborn, Germany
Philip J. Erickson
Haystack Observatory, Massachusetts Institute of Technology, Westford, MA 01886, USA
Juha P. Vierinen
Department of Physics and Technology, UiT Arctic University of Norway, 9010 Tromsø, Norway
J. Miguel Urco
Leibniz Institute of Atmospheric Physics, University of Rostock, 18225 Kühlungsborn, Germany
Matthias Clahsen
Leibniz Institute of Atmospheric Physics, University of Rostock, 18225 Kühlungsborn, Germany
Related authors
No articles found.
Daniel J. Emmons, Cornelius Csar Jude H. Salinas, Dong L. Wu, Nimalan Swarnalingam, Eugene V. Dao, Jorge L. Chau, Yosuke Yamazaki, Kyle E. Fitch, and Victoriya V. Forsythe
EGUsphere, https://doi.org/10.5194/egusphere-2025-3731, https://doi.org/10.5194/egusphere-2025-3731, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The E-region of the Earth’s ionosphere plays an important role in atmospheric energy balance and High Frequency radio propagation. In this paper, we compare predictions from two recently developed ionospheric models to observations by ionospheric sounders (ionosondes). Overall, the models show reasonable agreement with the observations. However, there are several areas for improvement in the models as well as questions about the accuracy of the automatically processed ionosonde dataset.
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323, https://doi.org/10.5194/egusphere-2025-2323, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The phenomena of meteors occurs at altitudes of 60–120 km and can be used to measure the neutral atmosphere. We use a large high power radar system in Norway (MAARSY) to determine changes to the atmospheric density between the years of 2016–2023 at altitudes of 85–115 km. The same day-of-year is compared, minimizing changes to the measurements due to factors other than the atmosphere. This presents a novel method by which to obtain atmospheric neutral density variations.
J. Federico Conte, Jorge L. Chau, Toralf Renkwitz, Ralph Latteck, Masaki Tsutsumi, Christoph Jacobi, Njål Gulbrandsen, and Satonori Nozawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1996, https://doi.org/10.5194/egusphere-2025-1996, 2025
Short summary
Short summary
Analysis of 10 years of continuous measurements provided MMARIA/SIMONe Norway and MMARIA/SIMONe Germany reveals that the divergent and vortical motions in the mesosphere and lower thermosphere exchange the dominant role depending on the height and the time of the year. At summer mesopause altitudes over middle latitudes, the horizontal divergence and the relative vorticity contribute approximately the same, indicating an energetic balance between mesoscale divergent and vortical motions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Claire C. Trop, James LaBelle, Philip J. Erickson, Shun-Rong Zhang, David McGaw, and Terrence Kovacs
Atmos. Meas. Tech., 18, 1909–1925, https://doi.org/10.5194/amt-18-1909-2025, https://doi.org/10.5194/amt-18-1909-2025, 2025
Short summary
Short summary
Traveling ionospheric disturbances (TIDs) are manifestations of atmospheric waves that are significant for the transfer of energy and momentum between atmospheric layers and regions. This work demonstrates that velocities and directions of TIDs can be measured by monitoring the tiny shift in frequency of AM radio signals when they reflect from a moving ionosphere and that this method can be scaled to use large numbers of radio receivers and transmitters to monitor TIDs on a continental scale.
Jennifer Hartisch, Jorge L. Chau, Ralph Latteck, Toralf Renkwitz, and Marius Zecha
Ann. Geophys., 42, 29–43, https://doi.org/10.5194/angeo-42-29-2024, https://doi.org/10.5194/angeo-42-29-2024, 2024
Short summary
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Kristina Collins, Steve Cerwin, Philip Erickson, Dev Joshi, Nathaniel Frissell, and Joe Huba
EGUsphere, https://doi.org/10.5194/egusphere-2022-327, https://doi.org/10.5194/egusphere-2022-327, 2022
Preprint archived
Short summary
Short summary
Radio measurements of time standard stations can be used to measure changes in the ionosphere's height, but not the height itself. In this paper, we show that we can estimate ionospheric height using data from amateur radio stations along with other systems and simulations, that multiple signal paths can be found in this data, and that precisely controlling the receiver frequency is important for this approach to work. This work will help us analyze radio data collected by citizen scientists.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Johann Stamm, Juha Vierinen, Juan M. Urco, Björn Gustavsson, and Jorge L. Chau
Ann. Geophys., 39, 119–134, https://doi.org/10.5194/angeo-39-119-2021, https://doi.org/10.5194/angeo-39-119-2021, 2021
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Cited articles
Andrioli, V. F., Fritts, D. C., Batista, P. P., and Clemesha, B. R.: Improved
analysis of all-sky meteor radar measurements of gravity wave variances and
momentum fluxes, Ann. Geophys., 31, 889–908,
https://doi.org/10.5194/angeo-31-889-2013, 2013. a
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.:
The upper-atmosphere extension of the ICON general circulation model
(version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569,
https://doi.org/10.5194/gmd-12-3541-2019, 2019. a
Browning, K. A. and Wexler, R.: The determination of kinematic properties of a
wind field using Doppler radar, J. Appl. Meteorol., 7, 105–113,
https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a
Charuvil Asokan, H., Chau, J. L., Marino, R., Vierinen, J., Vargas, F., Urco, J. M., Clahsen, M., and Jacobi, C.: Study of second-order wind statistics in the mesosphere and lower thermosphere region from multistatic specular meteor radar observations during the SIMONe 2018 campaign, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-974, 2020. a, b, c
Chau, J. L. and Clahsen, M.: Empirical phase calibration for multi-static
specular meteor radars using a beam-forming approach, Radio Sci., 54, 60–71,
https://doi.org/10.1029/2018RS006741, 2019. a
Chau, J. L., Stober, G., Hall, C. M., Tsutsumi, M., Laskar, F. I., and
Hoffmann, P.: Polar mesospheric horizontal divergence and relative vorticity
measurements using multiple specular meteor radars, Radio Sci., 52,
811–828, https://doi.org/10.1002/2016RS006225, 2016RS006225, 2017. a, b, c, d, e, f, g
Chau, J. L., Urco, J. M., Vierinen, J. P., Volz, R. A., Clahsen, M., Pfeffer,
N., and Trautner, J.: Novel specular meteor radar systems using coherent MIMO
techniques to study the mesosphere and lower thermosphere, Atmos. Meas.
Tech., 12, 2113–2127, https://doi.org/10.5194/amt-12-2113-2019, 2019. a, b, c
Chau, J. L., Urco, J. M., Vierinen, J., Harding, B. J., Clahsen, M., Pfeffer,
N., Kuyeng, K. M., Milla, M. A., and Erickson, P. J.: Multistatic Specular
Meteor Radar Network in Peru: System Description and Initial Results, Earth
Space Sci., 8, e2020EA001293,
https://doi.org/10.1029/2020EA001293, 2021. a, b, c, d, e, f
Conte, J. F., Chau, J. L., Urco, J. M., Latteck, R., Vierinen, J., and
Salvador, J. O.: First studies of mesosphere and lower thermosphere dynamics
using a multistatic specular meteor radar network over southern Patagonia,
Earth Space Sci., 8, e2020EA001356,
https://doi.org/10.1029/2020EA001356, 2021. a, b
Cover, T. M. and Thomas, J. A.: Elements of Information Theory, John Wiley &
Sons, New York, 2006. a
Daley, R.: Atmospheric data analysis, Cambridge Univ. Press, Cambridge,
1991. a
Davis, S. C., Mabry, D. J., Koga, R., and George, J. S.: SEE and TID
Testing of Components for the Near Infrared Airglow Camera (NIRAC), in: 2018 IEEE Nuclear and Space Radiation Effects Conference (NSREC 2018), 2018 IEEE Nuclear and Space Radiation Effects Conference (NSREC 2018), Waikoloa Village, HI, 1–5,
https://doi.org/10.1109/NSREC.2018.8584268, 2018. a
Foreman-Mackey, D., Agol, E., Ambikasaran, S., and Angus, R.: Fast and Scalable
Gaussian Process Modeling with Applications to Astronomical Time Series,
Astron. J., 154, 220, https://doi.org/10.3847/1538-3881/aa9332, 2017. a
Fritts, D. C., Janches, D., Hocking, W. K., Mitchell, N. J., and Taylor, M. J.:
Assessment of gravity wave momentum flux measurement capabilities by meteor
radars having different transmitter power and antenna configurations, J.
Geophys. Res., 117, D10108, https://doi.org/10.1029/2011JD017174, 2012. a
Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G.: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration, in: Advances in Neural Information Processing Systems, 31, 7576–7586, 2018. a
Harding, B. J., Makela, J. J., and Meriwether, J. W.: Estimation of mesoscale
thermospheric wind structure using a network of interferometers, J.
Geophys. Res.-Space, 120, 3928–3940,
https://doi.org/10.1002/2015JA021025, 2015. a, b
He, M. and Chau, J. L.: Mesospheric semidiurnal tides and near-12 h waves
through jointly analyzing observations of five specular meteor radars from
three longitudinal sectors at boreal midlatitudes, Atmos. Chem. Phys., 19,
5993–6006, https://doi.org/10.5194/acp-19-5993-2019, 2019. a
He, M., Chau, J. L., Stober, G., Li, G., Ning, B., and Hoffmann, P.: Relations
between semidiurnal tidal variants through diagnosing the zonal wavenumber
using a phase differencing technique based on two ground-based detectors, J.
Geophys. Res.-Atmos., 123, 4015–4026, https://doi.org/10.1002/2018JD028400, 2018. a
Hocking, W. K.: A new approach to momentum flux determinations using SKiYMET
meteor radars, Ann. Geophys., 23, 2433–2439,
https://doi.org/10.5194/angeo-23-2433-2005, 2005. a
Hoffmann, P., Becker, E., Singer, W., and Placke, M.: Seasonal variation of
mesospheric waves at northern middle and high latitudes, J.
Atmos. Sol.-Terr. Phys., 72, 1068–1079,
https://doi.org/10.1016/j.jastp.2010.07.002, 2010. a
Holdsworth, D. A., Reid, I. M., and Cervera, M. A.: Buckland Park all-sky
interferometric meteor radar, Radio Sci., 39, RS5009, https://doi.org/10.1029/2003RS003014,
2004. a, b, c
Hysell, D. L., Larsen, M. F., and Sulzer, M. P.: High time and height
resolution neutral wind profile measurements across the mesosphere/lower
thermosphere region using the Arecibo incoherent scatter radar, J.
Geophys. Res.-Space, 119, 2345–2358,
https://doi.org/10.1002/(ISSN)2169-9402, 2014. a
Journel, A. G. and Huijbregts, C. J.: Mining Geostatistics, Academic Press,
London, New York, 1978. a
Liu, H. L.: Quantifying gravity wave forcing using scale invariance, Nat.
Commun., 10, 1–12, https://doi.org/10.1038/s41467-019-10527-z, 2019. a
Marino, R., Rosenberg, D., Herbert, C., and Pouquet, A.: Interplay of waves and
eddies in rotating stratified turbulence and the link with kinetic-potential
energy partition, Europhys. Lett., 112, 49001,
https://doi.org/10.1209/0295-5075/112/49001, 2015. a
Matheron, G.: The Intrinsic Random Functions and Their Applications, Adv. Appl. Probab., 5, 439–468, https://doi.org/10.2307/1425829, 1973. a
Meriwether, J., Faivre, M., Fesen, C., Sherwood, P., and Veliz, O.: New
results on equatorial thermospheric winds and the midnight temperature
maximum, Ann. Geophys, 26, 447–466, 2008. a
Mitchell, N. J., Middleton, H. R., Beard, A. G., Williams, P. J. S., and
Muller, H. G.: The 16-day planetary wave in the mesosphere and lower
thermosphere, Ann. Geophys., 17,
1447–1456, 1999. a
Mitchell, N. J., Pancheva, D., Middleton, H. R., and Hagan, M. E.: Mean winds
and tides in the Arctic mesosphere and lower thermosphere, J. Geophys.
Res.-Space, 107, 1004, https://doi.org/10.1029/2001JA900127, 2002. a
Murphy, D. J.: Observations of a nonmigrating component of the semidiurnal tide
over Antarctica, J. Geophys. Res., 108, 4241, https://doi.org/10.1029/2002JD003077, 2003. a
Murphy, D. J., Forbes, J. M., Walterscheid, R. L., Hagan, M. E., Avery, S. K.,
Aso, T., Fraser, G. J., Fritts, D. C., Jarvis, M. J., J., M. A., Riggin,
D. M., Tsutsumi, M., and Vincent, R. A.: A climatology of tides in the
antarctic mesosphere and lower thermosphere, J. Geophys. Res.-Atmos., 111,
1–17, https://doi.org/10.1029/2005JD006803, 2006. a
Nicolls, M., Cosgrove, R., and Bahcivan, H.: Estimating the vector electric
field using monostatic, multibeam incoherent scatter radar measurements,
Radio Sci., 49, 1124–1139, https://doi.org/10.1002/2014RS005519, 2014. a
Pancheva, D., Mitchell, N., Clark, R. R., Drobjeva, J., and Lastovicka, J.:
Variability in the maximum height of the ionospheric F2-layer over
Millstone Hill (September 1998 to March 2000); influence from below and
above, Ann. Geophys, 20, 1807—1819, 2002. a
Placke, M., Hoffmann, P., Latteck, R., and Rapp, M.: Gravity wave momentum
fluxes from MF and meteor radar measurements in the polar MLT region,
J. Geophys. Res.-Space, 120, 736–750,
https://doi.org/10.1002/2014JA020460, 2015. a
Roberts, B. C. and Larsen, M. F.: Structure function analysis of chemical
tracer trails in the mesosphere‐lower thermosphere region, J.
Geophys. Res., 119, 6368–6375, https://doi.org/10.1002/2013JD020796, 2014. a
Sandford, D. J., Muller, H. G., and Mitchell, N. J.: Observations of lunar tides in the mesosphere and lower thermosphere at Arctic and middle latitudes, Atmos. Chem. Phys., 6, 4117–4127, https://doi.org/10.5194/acp-6-4117-2006, 2006. a
Scheuerer, M., Schaback, R., and Schlather, M.: Interpolation of Spatial Data –
A Stochastic or a Deterministic Problem?, Europ. J. Appl.
Mathemat., 24, 601–629,
https://doi.org/10.1017/S0956792513000016, 2013. a
Spargo, A. J., Reid, I. M., and MacKinnon, A. D.: Multistatic meteor radar
observations of gravity-wave–tidal interaction over southern Australia,
Atmos. Meas. Tech., 12, 4791–4812,
https://doi.org/10.5194/amt-12-4791-2019, 2019. a
Stober, G. and Chau, J. L.: A multistatic and multifrequency novel approach for
specular meteor radars to improve wind measurements in the MLT region,
Radio Sci., 50, 431–442, https://doi.org/10.1002/2014RS005591, 2014RS005591, 2015. a
Urco, J. M., Chau, J. L., Milla, M. A., Vierinen, J. P., and Weber, T.:
Coherent MIMO to Improve Aperture Synthesis Radar Imaging of Field-Aligned
Irregularities: First Results at Jicamarca, IEEE Trans. Geosci.
Remote Sens., 56, 2980–2990, https://doi.org/10.1109/TGRS.2017.2788425, 2018. a
Urco, J. M., Chau, J. L., Weber, T., and Latteck, R.: Enhancing the
spatio-temporal features of polar mesosphere summer echoes using coherent
MIMO and radar imaging at MAARSY, Atmos. Meas. Tech., 12,
955–969, https://doi.org/10.5194/amt-12-955-2019, 2019a. a
Urco, J. M., Chau, J. L., Weber, T., Vierinen, J., and Volz, R.: Sparse signal
recovery in MIMO specular meteor radars with waveform diversity, IEEE
Trans. Geosci. Remote Sens., 57, 10088–10098, https://doi.org/10.1029/2019EA000570,
2019b. a
Vargas, F., Chau, J. L., Charuvil Asokan, H., and Gerding, M.: Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign, Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, 2021. a, b
Vierinen, J., Chau, J. L., Pfeffer, N., Clahsen, M., and Stober, G.: Coded
continuous wave meteor radar, Atmos. Meas. Tech., 9,
829–839, https://doi.org/10.5194/amt-9-829-2016, 2016. a
Vierinen, J., Chau, J. L., Asokan, H. C., Urco, J., Clahsen, M., Avsarkisov,
V., Marino, R., and Volz, R.: Observing mesospheric turbulence with specular
meteor radars: A novel method for estimating second order statistics of wind
velocity, Earth Space Sci., 6, 1171–1195, https://doi.org/10.1029/2019EA000570, 2019. a, b, c, d, e
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors,
Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A.,
Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C.,
Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R.,
Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders,
F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee,
G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T.,
Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger,
J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J.,
Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K.,
Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak,
M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A.,
Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S.,
Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J.,
Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T.,
Krauss, T., Upadhyay, U., Halchenko, Y. O., and Vázquez-Baeza, Y.:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Method., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Volz, R., Chau, J. L., Erickson, P. J., Vierinen, J. P., Urco, J. M., and
Clahsen, M.: Meteor Observations and Wind Estimates from the Northern
Germany SIMONe Radar Network on November 5, 2018, Zenodo [data set],
https://doi.org/10.5281/zenodo.5550854, 2021. a
Wahlström, N., Kok, M., Schön, T. B., and Gustafsson, F.: Modeling
magnetic fields using Gaussian processes, in: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 3522–3526,
https://doi.org/10.1109/ICASSP.2013.6638313, 2013. a
Wilson, A. and Nickisch, H.: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP), in: Proceedings of the 32nd International Conference on Machine Learning, International Conference on Machine Learning, Lille, France, 1775–1784, 2015. a
Short summary
We introduce a new way of estimating winds in the upper atmosphere (about 80 to 100 km in altitude) from the observed Doppler shift of meteor trails using a statistical method called Gaussian process regression. Wind estimates and, critically, the uncertainty of those estimates can be evaluated smoothly (i.e., not gridded) in space and time. The effective resolution is set by provided parameters, which are limited in practice by the number density of the observed meteors.
We introduce a new way of estimating winds in the upper atmosphere (about 80 to 100 km in...