Articles | Volume 15, issue 6
Atmos. Meas. Tech., 15, 1729–1754, 2022
https://doi.org/10.5194/amt-15-1729-2022
Atmos. Meas. Tech., 15, 1729–1754, 2022
https://doi.org/10.5194/amt-15-1729-2022
Research article
23 Mar 2022
Research article | 23 Mar 2022

Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds

Valery Shcherbakov et al.

Related authors

McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021,https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Study of the diffraction pattern of cloud particles and the respective responses of optical array probes
Thibault Vaillant de Guélis, Alfons Schwarzenböck, Valery Shcherbakov, Christophe Gourbeyre, Bastien Laurent, Régis Dupuy, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 12, 2513–2529, https://doi.org/10.5194/amt-12-2513-2019,https://doi.org/10.5194/amt-12-2513-2019, 2019
Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli
Valery Shcherbakov, Olivier Jourdan, Christiane Voigt, Jean-Francois Gayet, Aurélien Chauvigne, Alfons Schwarzenboeck, Andreas Minikin, Marcus Klingebiel, Ralf Weigel, Stephan Borrmann, Tina Jurkat, Stefan Kaufmann, Romy Schlage, Christophe Gourbeyre, Guy Febvre, Tatyana Lapyonok, Wiebke Frey, Sergej Molleker, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11883–11897, https://doi.org/10.5194/acp-16-11883-2016,https://doi.org/10.5194/acp-16-11883-2016, 2016
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
Martin Schnaiter, Emma Järvinen, Paul Vochezer, Ahmed Abdelmonem, Robert Wagner, Olivier Jourdan, Guillaume Mioche, Valery N. Shcherbakov, Carl G. Schmitt, Ugo Tricoli, Zbigniew Ulanowski, and Andrew J. Heymsfield
Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016,https://doi.org/10.5194/acp-16-5091-2016, 2016
Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory, France
G. Guyot, C. Gourbeyre, G. Febvre, V. Shcherbakov, F. Burnet, J.-C. Dupont, K. Sellegri, and O. Jourdan
Atmos. Meas. Tech., 8, 4347–4367, https://doi.org/10.5194/amt-8-4347-2015,https://doi.org/10.5194/amt-8-4347-2015, 2015

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022,https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
The surface longwave cloud radiative effect derived from space lidar observations
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022,https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022,https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022,https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
An all-sky camera image classification method using cloud cover features
Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu
Atmos. Meas. Tech., 15, 3629–3639, https://doi.org/10.5194/amt-15-3629-2022,https://doi.org/10.5194/amt-15-3629-2022, 2022
Short summary

Cited articles

Ackermann, J. Völger, P., and Wiegner, M.: Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements, Appl. Opt., 38, 5195–5201, https://doi.org/10.1364/AO.38.005195, 1999. 
Alkasem, A., Szczap, F., Cornet, C., Shcherbakov, V., Gour, Y., Jourdan, O., Labonnote, L. C., and Mioche, G.: Effects of cirrus heterogeneity on lidar CALIOP/CALIPSO data, J. Quant. Spectrosc. Ra., 202, 38–49, https://doi.org/10.1016/j.jqsrt.2017.07.005, 2017. 
Allen, R. and Platt, C.: Lidar for multiple backscattering and depolarization observations, Appl. Opt., 16, 3193–3199, https://doi.org/10.1364/AO.16.003193, 1977. 
Bissonnette, L. R.: Lidar and Multiple Scattering, in: Lidar, edited by: Weitkamp, C., Springer Series in Optical Sciences, Springer, New York, NY, vol. 102, 43–103, https://doi.org/10.1007/0-387-25101-4_3, 2005. 
Download
Short summary
We performed extensive Monte Carlo (MC) simulations of lidar signals and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus, and cirrus). The empirical model has very good quality of MC data fitting for all considered cases.