Articles | Volume 15, issue 9
https://doi.org/10.5194/amt-15-3031-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3031-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
ARC Centre of Excellence for Climate Extremes, Monash University, Melbourne, VIC 3800, Australia
Caroline Poulsen
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
Bureau of Meteorology, Melbourne, VIC, 3001, Australia
Steven Siems
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
ARC Centre of Excellence for Climate Extremes, Monash University, Melbourne, VIC 3800, Australia
ARC SRI Securing Antarctica's Environmental Future, Melbourne, VIC 3800, Australia
Simon Proud
National Centre for Earth Observation, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
STFC RAL Space and the National Centre for Earth Observation, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
Related authors
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209, https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Short summary
Southern Ocean (SO) clouds are crucial in defining the Earth’s radiation budget. They are primarily observed by satellites, due to a lack of surface observations. This study validated cloud top height and cloud mask and compared the microphysics products from 3 satellite cloud datasets over the SO. The study revealed significant differences in cloud property retrievals between the sensors. Multilayer clouds play a major role in the differences when validated with active satellite measurements.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Sreenath Avaronthan Veettil, Tahereh Alinejadtabrizi, Steven Siems, Peter May, Haifeng Zhang, and Eric Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3776, https://doi.org/10.5194/egusphere-2025-3776, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Using 14 years of observations from mooring, we reported that cold air advection creates intense surface flux exchange over the southern ocean, linked with strong boundary layer instability. Results also indicate that cold air advection creates frequent open mesoscale cellular convective clouds. The flux exchange for open and closed mesoscale cellular convective clouds is comparable, suggesting a limited role of the surface flux in the transition of these boundary layer clouds.
Lara S. Richards, Steven T. Siems, Yi Huang, Daniel P. Harrison, and Wenhui Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3639, https://doi.org/10.5194/egusphere-2025-3639, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
By studying the variability of the trade winds (persistent south-easterlies) during the Great Barrier Reef coral bleaching season, we show that ocean heating and a higher risk of coral bleaching are linked to the breakdown of the trade winds into either calm and clear conditions or a monsoon-like northerly flow. Years with mass coral bleaching are also associated with more "calm and clear" days in the warmest months and fewer strong trade wind days on the fringe months of the bleaching season.
Zhaoyang Kong, Andrew Prata, Peter May, Ariaan Purich, Yi Huang, and Steven Siems
EGUsphere, https://doi.org/10.5194/egusphere-2025-3496, https://doi.org/10.5194/egusphere-2025-3496, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
To investigate why ERA5 does not accurately capture the observed increase in annual precipitation at Macquarie Island during 1979 to 2023, we classify daily synoptic systems using k-means clustering. Find that the increase in mean intensity across all systems is the main contributor to the observed annual precipitation trend and the resulting discrepancy, rather than changes in the frequency. And this increase may also have a substantial impact on the freshwater fluxes over the Southern Ocean.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209, https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Short summary
Southern Ocean (SO) clouds are crucial in defining the Earth’s radiation budget. They are primarily observed by satellites, due to a lack of surface observations. This study validated cloud top height and cloud mask and compared the microphysics products from 3 satellite cloud datasets over the SO. The study revealed significant differences in cloud property retrievals between the sensors. Multilayer clouds play a major role in the differences when validated with active satellite measurements.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022, https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Cited articles
Abadi, M., Barham, P., Chen, J., Chen, P., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: Tensorflow: A system for
large-scale machine learning, in: 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2–4 Novembe 2016, Savannah, GA, USA, 265–283, 2016. a
AWS: JMA Himawari-8, AWS [data set], https://registry.opendata.aws/noaa-himawari, last access: 17 December 2021. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu,, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to
Himawari-8/9 – Japan's new-generation geostationary meteorological
satellites, J. Meteorol. Soc. JPN Ser. II, 94,
151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a, b, c, d
Coppo, P., Mastrandrea, C., Stagi, M., Calamai, L., Barilli, M., and Nieke, J.:
The sea and land surface temperature radiometer (SLSTR) detection assembly
design and performance, in: SPIE Proceedings, edited by: Meynart, R., Neeck,
S. P., and Shimoda, H., SPIE, 8889, https://doi.org/10.1117/12.2029432, 2013. a
Eyre, J. R., English, S. J., and Forsythe, M.: Assimilation of satellite data
in numerical weather prediction. Part I: The early years, Q. J. Roy. Meteorol. Soc., 146, 49–68, https://doi.org/10.1002/qj.3654,
2019. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Filonchyk, M.: Characteristics of the severe March 2021 Gobi Desert dust storm
and its impact on air pollution in China, Chemosphere, 287, 132219,
https://doi.org/10.1016/j.chemosphere.2021.132219, 2022. a
Gautam, R., Gatebe, C. K., Singh, M. K., Várnai, T., and Poudyal, R.:
Radiative characteristics of clouds embedded in smoke derived from airborne
multiangular measurements, J. Geophys. Res.-Atmos., 121,
9140–9152, https://doi.org/10.1002/2016jd025309, 2016. a
Hanssen, A. and Kuipers, W.: On the Relationship Between the Frequency of Rain
and Various Meteorological Parameters. (with Reference to the Problem Ob
Objective Forecasting), Koninkl. Nederlands Meterologisch Institut.
Mededelingen en Verhandelingen, Staatsdrukkerij- en Uitgeverijbedrijf,
https://books.google.com.au/books?id=nTZ8OgAACAAJ (last access: 17 December 2021), 1965. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hollstein, A., Fischer, J., Carbajal Henken, C., and Preusker, R.: Bayesian cloud detection for MERIS, AATSR, and their combination, Atmos. Meas. Tech., 8, 1757–1771, https://doi.org/10.5194/amt-8-1757-2015, 2015. a
Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S., Kuehn,
R. E., Vaughan, M. A., and Baum, B.: Global Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud detection and height evaluation using
CALIOP, J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008jd009837,
2008. a
Hughes, M. J. and Kennedy, R.: High-Quality Cloud Masking of Landsat 8 Imagery
Using Convolutional Neural Networks, Remote Sens., 11, 2591,
https://doi.org/10.3390/rs11212591, 2019. a
Jian, B., Li, J., Zhao, Y., He, Y., Wang, J., and Huang, J.: Evaluation of the
CMIP6 planetary albedo climatology using satellite observations, Clim.
Dynam., 54, 5145–5161, https://doi.org/10.1007/s00382-020-05277-4, 2020. a
Justice, C., Vermote, E., Townshend, J., Defries, R., Roy, D., Hall, D.,
Salomonson, V., Privette, J., Riggs, G., Strahler, A., Lucht, W., Myneni, R.,
Knyazikhin, Y., Running, S., Nemani, R., Wan, Z., Huete, A., van Leeuwen, W.,
Wolfe, R., Giglio, L., Muller, J., Lewis, P., and Barnsley, M.: The Moderate
Resolution Imaging Spectroradiometer (MODIS): land remote sensing for
global change research, IEEE Trans. Geosci. Remote Sens.,
36, 1228–1249, https://doi.org/10.1109/36.701075, 1998. a
Kingma, D. and Ba, J.: Adam: A method for stochastic optimization in:
Proceedings of the 3rd international conference for learning representations
(iclr'15), 7–9 May, San Diego, https://doi.org/10.48550/arXiv.1412.6980, 2015. a
Koffi, B., Schulz, M., Bréon, F.-M., Dentener, F., Steensen, B. M.,
Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T., Bian, H., Chin, M., Diehl, T., Easter, R., Ghan, S.,
Hauglustaine, D. A., Iversen, T., Kirkevåg, A., Liu, X., Lohmann, U.,
Myhre, G., Rasch, P., Seland, Ø., Skeie, R. B., Steenrod, S. D., Stier,
P., Tackett, J., Takemura, T., Tsigaridis, K., Vuolo, M. R., Yoon, J., and
Zhang, K.: Evaluation of the aerosol vertical distribution in global aerosol
models through comparison against CALIOP measurements: AeroCom phase II
results, J. Geophys. Re.-Atmos., 121, 7254–7283,
https://doi.org/10.1002/2015jd024639, 2016. a
Le GLeau, H.: Algorithm theoretical basis document for the cloud product
processors of the NWC/GEO, Tech. rep., Technical Report, Meteo-France, Centre
de Meteorologie Spatiale, https://www.nwcsaf.org/Downloads/GEO/2018/Documents/Scientific_Docs/NWC-CDOP2-GEO-MFL-SCI-ATBD-Cloud_v2.1.pdf (last access: 2 March 2022),
2016. a, b, c, d
Lee, J., Shi, Y. R., Cai, C., Ciren, P., Wang, J., Gangopadhyay, A., and Zhang,
Z.: Machine Learning Based Algorithms for Global Dust Aerosol Detection from
Satellite Images: Inter-Comparisons and Evaluation, Remote Sens., 13, 456,
https://doi.org/10.3390/rs13030456, 2021. a
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019. a, b
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B.,
Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local explanations
to global understanding with explainable AI for trees, Nat. Mach.
Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020. a, b
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018. a, b
Mahajan, S. and Fataniya, B.: Cloud detection methodologies: variants and
development – a review, Comp. Intell. Syst., 6,
251–261, https://doi.org/10.1007/s40747-019-00128-0, 2019. a
Marais, W. J., Holz, R. E., Reid, J. S., and Willett, R. M.: Leveraging spatial textures, through machine learning, to identify aerosols and distinct cloud types from multispectral observations, Atmos. Meas. Tech., 13, 5459–5480, https://doi.org/10.5194/amt-13-5459-2020, 2020. a
Merchant, C., Embury, O., Borgne, P. L., and Bellec, B.: Saharan dust in
nighttime thermal imagery: Detection and reduction of related biases in
retrieved sea surface temperature, Remote Sens. Environ., 104,
15–30, https://doi.org/10.1016/j.rse.2006.03.007, 2006. a
NOAA: Global Forcasting System (GFS),
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (last access: 17 December 2021),
2021. a
Pavolonis, M. J., Heidinger, A. K., and Sieglaff, J.: Automated retrievals of
volcanic ash and dust cloud properties from upwelling infrared measurements,
J. Geophys. Res.-Atmos., 118, 1436–1458,
https://doi.org/10.1002/jgrd.50173, 2013. a
Peterson, D. A., Fromm, M. D., McRae, R. H. D., Campbell, J. R., Hyer, E. J.,
Taha, G., Camacho, C. P., Kablick, G. P., Schmidt, C. C., and DeLand, M. T.:
Australia's Black Summer pyrocumulonimbus super outbreak reveals potential
for increasingly extreme stratospheric smoke events, Climate
Atmos. Sci., 4, 38, https://doi.org/10.1038/s41612-021-00192-9, 2021. a
Poulsen, C., Egede, U., Robbins, D., Sandeford, B., Tazi, K., and Zhu, T.:
Evaluation and comparison of a machine learning cloud identification
algorithm for the SLSTR in polar regions, Remote Sens. Environ.,
248, 111999, https://doi.org/10.1016/j.rse.2020.111999, 2020. a, b, c
Raspaud, M., Hoese, D., Dybbroe, A., Lahtinen, P., Devasthale, A., Itkin, M., Hamann, U., Rasmussen, L. Ø., Nielsen, E. S., Leppelt, T., Maul, A., Kliche, C., and Thorsteinsson, H.: PyTroll: An Open-Source, Community-Driven Python Framework to Process Earth Observation Satellite Data, B. Am. Meteorol. Soc., 99, 1329–1336, https://doi.org/10.1175/BAMS-D-17-0277.1, 2018. a
Robbins, D. and Proud, S.: dr1315/AHINN: AHINN Initial Release, Zenodo [code], https://doi.org/10.5281/ZENODO.6538854, 2022. a
Robbins, D., Poulsen, C., Proud, S., and Siems, S.:
AHI-CALIOP Collocated Data for Training and Validation of Cloud Masking Neural Networks, Zenodo [data
set], https://doi.org/10.5281/zenodo.5773420, 2021. a
Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., and
Bachmeier, A. S.: INTRODUCING THE NEXT-GENERATION ADVANCED
BASELINE IMAGER ON GOES-R, B. Am. Meteorol.
Soc., 86, 1079–1096, https://doi.org/10.1175/bams-86-8-1079, 2005. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting, The
J. Mach. Learn. Res., 15, 1929–1958, 2014. a
Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, 2020. a, b
Sus, O., Stengel, M., Stapelberg, S., McGarragh, G., Poulsen, C., Povey, A. C., Schlundt, C., Thomas, G., Christensen, M., Proud, S., Jerg, M., Grainger, R., and Hollmann, R.: The Community Cloud retrieval for CLimate (CC4CL) – Part 1: A framework applied to multiple satellite imaging sensors, Atmos. Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-11-3373-2018, 2018. a
Taylor, T. E., O'Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q., Savtchenko, A., Nelson, R. R., Rosenthal, E. J., Chang, A. Y., Fisher, B., Osterman, G. B., Pollock, R. H., Crisp, D., Eldering, A., and Gunson, M. R.: Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmos. Meas. Tech., 9, 973–989, https://doi.org/10.5194/amt-9-973-2016, 2016.
a
Uddstrom, M. J., Gray, W. R., Murphy, R., Oien, N. A., and Murray, T.: A
Bayesian Cloud Mask for Sea Surface Temperature Retrieval, J.
Atmos. Ocean. Technol., 16, 117–132,
https://doi.org/10.1175/1520-0426(1999)016<0117:abcmfs>2.0.co;2, 1999. a
Wang, C., Platnick, S., Meyer, K., Zhang, Z., and Zhou, Y.: A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations, Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, 2020. a
Winker, D. M., Hunt, W. H., and Hostetler, C. A.: Status and performance of the
CALIOP lidar, in: Laser Radar Techniques for Atmospheric Sensing, edited by:
Singh, U. N., SPIE, https://doi.org/10.1117/12.571955, 2004. a, b, c
Yao, J., Raffuse, S. M., Brauer, M., Williamson, G. J., Bowman, D. M.,
Johnston, F. H., and Henderson, S. B.: Predicting the minimum height of
forest fire smoke within the atmosphere using machine learning and data from
the CALIPSO satellite, Remote Sens. Environ., 206, 98–106,
https://doi.org/10.1016/j.rse.2017.12.027, 2018. a
Yoshida, M., Kikuchi, M., Nagao, T. M., Murakami, H., Nomaki, T., and
Higurashi, A.: Common Retrieval of Aerosol Properties for Imaging Satellite
Sensors, J. Meteorol. Soc. JPN Ser. II, 96B,
193–209, https://doi.org/10.2151/jmsj.2018-039, 2018. a
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018. a
Zhang, W., Xu, H., and Zheng, F.: Aerosol Optical Depth Retrieval over East
Asia Using Himawari-8/AHI Data, Remote Sens., 10, 137,
https://doi.org/10.3390/rs10010137, 2018. a
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the Fmask
algorithm: cloud, cloud shadow, and snow detection for Landsats
4–7, 8, and Sentinel 2 images, Remote Sens. Environ.,
159, 269–277, https://doi.org/10.1016/j.rse.2014.12.014, 2015. a
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is...