Articles | Volume 15, issue 9
https://doi.org/10.5194/amt-15-3031-2022
https://doi.org/10.5194/amt-15-3031-2022
Research article
 | 
17 May 2022
Research article |  | 17 May 2022

Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data

Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud

Related authors

Validation and comparison of cloud properties retrieved from passive satellites over the Southern Ocean
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209,https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024,https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Extension of AVHRR-based climate data records: exploring ways to simulate AVHRR radiances from Suomi NPP VIIRS data
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
Atmos. Meas. Tech., 18, 3833–3855, https://doi.org/10.5194/amt-18-3833-2025,https://doi.org/10.5194/amt-18-3833-2025, 2025
Short summary
Improved simulation of thunderstorm characteristics and polarimetric signatures with LIMA two-moment microphysics in AROME
Cloé David, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard
Atmos. Meas. Tech., 18, 3715–3745, https://doi.org/10.5194/amt-18-3715-2025,https://doi.org/10.5194/amt-18-3715-2025, 2025
Short summary
Assessment of horizontally oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025,https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, P., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: Tensorflow: A system for large-scale machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2–4 Novembe 2016, Savannah, GA, USA, 265–283, 2016. a
AWS: JMA Himawari-8, AWS [data set], https://registry.opendata.aws/noaa-himawari, last access: 17 December 2021. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu,, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. JPN Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a, b, c, d
Coppo, P., Mastrandrea, C., Stagi, M., Calamai, L., Barilli, M., and Nieke, J.: The sea and land surface temperature radiometer (SLSTR) detection assembly design and performance, in: SPIE Proceedings, edited by: Meynart, R., Neeck, S. P., and Shimoda, H., SPIE, 8889, https://doi.org/10.1117/12.2029432, 2013. a
Eyre, J. R., English, S. J., and Forsythe, M.: Assimilation of satellite data in numerical weather prediction. Part I: The early years, Q. J. Roy. Meteorol. Soc., 146, 49–68, https://doi.org/10.1002/qj.3654, 2019. a
Download
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Share