Articles | Volume 15, issue 21
https://doi.org/10.5194/amt-15-6447-2022
https://doi.org/10.5194/amt-15-6447-2022
Research article
 | 
11 Nov 2022
Research article |  | 11 Nov 2022

Technique for comparison of backscatter coefficients derived from in situ cloud probe measurements with concurrent airborne lidar

Shawn Wendell Wagner and David James Delene

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Applicability of the low-cost OPC-N3 optical particle counter for microphysical measurements of fog
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023,https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
A study of optical scattering modelling for mixed-phase polar stratospheric clouds
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech., 16, 419–431, https://doi.org/10.5194/amt-16-419-2023,https://doi.org/10.5194/amt-16-419-2023, 2023
Short summary
Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions
Petri Tiitta, Ari Leskinen, Ville A. Kaikkonen, Eero O. Molkoselkä, Anssi J. Mäkynen, Jorma Joutsensaari, Silvia Calderon, Sami Romakkaniemi, and Mika Komppula
Atmos. Meas. Tech., 15, 2993–3009, https://doi.org/10.5194/amt-15-2993-2022,https://doi.org/10.5194/amt-15-2993-2022, 2022
Short summary
Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020,https://doi.org/10.5194/amt-13-6613-2020, 2020
Short summary
In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020,https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary

Cited articles

Anderson, K. J. and Ray, M. D.: SLD and Ice Crystal Discrimination with the Optical Ice Detector, International Conference on Icing of Aircraft, Engines, and Structures, SAE International, Warrendale, PA, USA, https://doi.org/10.4271/2019-01-1934, 2019. 
Bansemer, A.: Software for OAP Data Analysis Version 2, GitHub [code], https://github.com/abansemer/soda2, last access: 20 January 2020. 
Baumgardner, D.: The effects of air-flow distortion on aircraft measurement: A workshop summary, Bull. Am. Meteorol. Soc., 65, 1212–1213, 1984. 
Baumgardner, D. and Korolev, A.: Airspeed Corrections for Optical Array Probe Sample Volumes, J. Atmos. Ocean. Technol., 14, 1224–1229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2, 1997. 
Baumgardner, D., Newton, R., Krämer, M., Meyer, J., Beyer, A., Wendisch, M., and Vochezer, P.: The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals, Atmospheric Res., 142, 2–14, https://doi.org/10.1016/j.atmosres.2013.12.010, 2014. 
Download
Short summary
Jet engine power loss due to ice accumulation is a hazard in high-altitude clouds. A potential tool for informing pilots when entering such clouds is an onboard lidar system. Lidar and wing-mounted probe backscatter coefficients agree within uncertainties for liquid clouds but not for ice clouds. The lidar measurements are correlated with total water content over a broad range of environments, which indicates that the lidar system is useful for detecting hazardous ice cloud conditions.