Articles | Volume 15, issue 21
Atmos. Meas. Tech., 15, 6447–6466, 2022
https://doi.org/10.5194/amt-15-6447-2022
Atmos. Meas. Tech., 15, 6447–6466, 2022
https://doi.org/10.5194/amt-15-6447-2022
Research article
11 Nov 2022
Research article | 11 Nov 2022

Technique for comparison of backscatter coefficients derived from in situ cloud probe measurements with concurrent airborne lidar

Shawn Wendell Wagner and David James Delene

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions
Petri Tiitta, Ari Leskinen, Ville A. Kaikkonen, Eero O. Molkoselkä, Anssi J. Mäkynen, Jorma Joutsensaari, Silvia Calderon, Sami Romakkaniemi, and Mika Komppula
Atmos. Meas. Tech., 15, 2993–3009, https://doi.org/10.5194/amt-15-2993-2022,https://doi.org/10.5194/amt-15-2993-2022, 2022
Short summary
Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020,https://doi.org/10.5194/amt-13-6613-2020, 2020
Short summary
In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020,https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach
Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng
Atmos. Meas. Tech., 13, 1033–1049, https://doi.org/10.5194/amt-13-1033-2020,https://doi.org/10.5194/amt-13-1033-2020, 2020
Short summary
Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP)
Spencer Faber, Jeffrey R. French, and Robert Jackson
Atmos. Meas. Tech., 11, 3645–3659, https://doi.org/10.5194/amt-11-3645-2018,https://doi.org/10.5194/amt-11-3645-2018, 2018
Short summary

Cited articles

Anderson, K. J. and Ray, M. D.: SLD and Ice Crystal Discrimination with the Optical Ice Detector, International Conference on Icing of Aircraft, Engines, and Structures, SAE International, Warrendale, PA, USA, https://doi.org/10.4271/2019-01-1934, 2019. 
Bansemer, A.: Software for OAP Data Analysis Version 2, GitHub [code], https://github.com/abansemer/soda2, last access: 20 January 2020. 
Baumgardner, D.: The effects of air-flow distortion on aircraft measurement: A workshop summary, Bull. Am. Meteorol. Soc., 65, 1212–1213, 1984. 
Baumgardner, D. and Korolev, A.: Airspeed Corrections for Optical Array Probe Sample Volumes, J. Atmos. Ocean. Technol., 14, 1224–1229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2, 1997. 
Baumgardner, D., Newton, R., Krämer, M., Meyer, J., Beyer, A., Wendisch, M., and Vochezer, P.: The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals, Atmospheric Res., 142, 2–14, https://doi.org/10.1016/j.atmosres.2013.12.010, 2014. 
Download
Short summary
Jet engine power loss due to ice accumulation is a hazard in high-altitude clouds. A potential tool for informing pilots when entering such clouds is an onboard lidar system. Lidar and wing-mounted probe backscatter coefficients agree within uncertainties for liquid clouds but not for ice clouds. The lidar measurements are correlated with total water content over a broad range of environments, which indicates that the lidar system is useful for detecting hazardous ice cloud conditions.