Articles | Volume 16, issue 6
https://doi.org/10.5194/amt-16-1461-2023
https://doi.org/10.5194/amt-16-1461-2023
Research article
 | 
21 Mar 2023
Research article |  | 21 Mar 2023

Correcting 3D cloud effects in XCO2 retrievals from the Orbiting Carbon Observatory-2 (OCO-2)

Steffen Mauceri, Steven Massie, and Sebastian Schmidt

Related authors

A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023,https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023,https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Neural network for aerosol retrieval from hyperspectral imagery
Steffen Mauceri, Bruce Kindel, Steven Massie, and Peter Pilewskie
Atmos. Meas. Tech., 12, 6017–6036, https://doi.org/10.5194/amt-12-6017-2019,https://doi.org/10.5194/amt-12-6017-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary
Robustness of atmospheric trace gas retrievals obtained from low-spectral-resolution Fourier transform infrared absorption spectra under variations of interferogram length
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025,https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Chen, S., Natraj, V., Zeng, Z.-C., and Yung, Y. L.: Machine learning-based aerosol characterization using OCO-2 O2 A-band observations, J. Quant. Spectrosc. Ra., 279, 108049, https://doi.org/10.1016/j.jqsrt.2021.108049, 2022. 
Cronk, H.: OCO-2/MODIS Collocation Products User Guide, Version 3, ftp://ftp.cira.colostate.edu/ftp/TTaylor/publications/ (last access: 13 March 2023), 2018. 
Dubey, M., Henderson, B., Green, D., Butterfield, Z., Keppel-Aleks, G., Allen, N., Blavier, J. F., Roehl, C., Wunch, D., and Lindenmaier, R.: TCCON data from Manaus (BR), Release GGG2014R0, CaltechDATA [data set], https://doi.org/10.14291/tccon.ggg2014.manaus01.R0/1149274, 2014a. 
Download
Short summary
The Orbiting Carbon Observatory-2 makes space-based measurements of reflected sunlight. Using a retrieval algorithm these measurements are converted to CO2 concentrations in the atmosphere. However, the converted CO2 concentrations contain errors for observations close to clouds. Using a simple machine learning approach, we developed a model to correct these remaining errors. The model is able to reduce errors over land and ocean by 20 % and 40 %, respectively.
Share