Articles | Volume 16, issue 2
https://doi.org/10.5194/amt-16-295-2023
https://doi.org/10.5194/amt-16-295-2023
Research article
 | 
20 Jan 2023
Research article |  | 20 Jan 2023

Assessing and mitigating the radar–radar interference in the German C-band weather radar network

Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz

Related authors

Monitoring and quantifying wind turbine clutter in DWD weather radar measurements
Michael Frech, Annette M. Boehm, and Patrick Tracksdorf
EGUsphere, https://doi.org/10.5194/egusphere-2025-4957,https://doi.org/10.5194/egusphere-2025-4957, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
First Nationwide Analysis of Riming Using Vertical Observations from the Operational German C-Band Radar Network
Paul Ockenfuß, Michael Frech, Mathias Gergely, and Stefan Kneifel
EGUsphere, https://doi.org/10.5194/egusphere-2025-4679,https://doi.org/10.5194/egusphere-2025-4679, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025,https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022,https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary

Cited articles

Doviak, R. J. and Zrnic, D. S.: Doppler Radar and Weather Observations, Dover Publications, Inc, 2006. a
Frech, M. and Hubbert, J.: Monitoring the differential reflectivity and receiver calibration of the German polarimetric weather radar network, Atmos. Meas. Tech., 13, 1051–1069, https://doi.org/10.5194/amt-13-1051-2020, 2020. a
Frech, M., Lange, B., Mammen, T., Seltmann, J., Morehead, C., and Rowan, J.: Influence of a Radome on Antenna Performance, J. Atmos. Ocean. Tech., 30, 313–324, 2013.  a
Frech, M., Hagen, M., and Mammen, T.: Monitoring the Absolute Calibration of a Polarimetric Weather Radar, J. Atmos. Ocean. Tech., 34, 599–615, https://doi.org/10.1175/JTECH-D-16-0076.1, 2017. a
Holleman, I. and Huuskonen, A.: Analytical formulas for refraction of radiowaves from exoatmospheric sources, Radio Sci., 48, 226–231, https://doi.org/10.1002/rds.20030, 2013. a
Download
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Share