Articles | Volume 16, issue 15
https://doi.org/10.5194/amt-16-3609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
K. Sebastian Schmidt
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, CO, USA
Hong Chen
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Daniel R. Feldman
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Bruce C. Kindel
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Joshua Mauss
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, CO, USA
Mathew van den Heever
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, CO, USA
Maria Z. Hakuba
NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Peter Pilewskie
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, CO, USA
Related authors
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025, https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Short summary
CO2 column-averaged dry-air mole fractions can be retrieved from space using spectrometers like OCO-2. However, nearby clouds induce spectral distortions that bias these retrievals beyond the accuracy needed for global CO2 source and sink assessments. This study employs a physics-based linearization approach to represent 3D cloud effects and introduces radiance-level mitigation techniques for actual OCO-2 data, enabling the operational implementation of these corrections.
Logan Thomas Mitchell, Connor J. Flynn, Kristina Pistone, Samuel E. LeBlanc, K. Sebastian Schmidt, and Jens Redemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-31, https://doi.org/10.5194/essd-2025-31, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
During 2016–2018, NASA conducted an airborne field campaign over the Southeast Atlantic Ocean to study biomass burning aerosols emitted from Southern African fires. These aerosols then interact with stratocumulus clouds over the Southeast Atlantic, which is difficult for climate models to account for. Our instrument, 4STAR, determines aerosol radiative properties. A dataset was already created for 2016, but additional quality control was required to address instrument issues for 2017 and 2018.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Thomas Hocking, Linda Megner, Maria Hakuba, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-829, https://doi.org/10.5194/egusphere-2025-829, 2025
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and emits back to space gives rise to climate change, but measuring the small imbalance is challenging. The Earth surface reflects sunlight more in some directions than in others, as with e.g. ocean sunglint. We simulate satellites to investigate how this uneven reflection impacts estimates of the imbalance. We identify orbits that cover all directions well, so that the impact is small.
Andrew John Buggee and Peter Andrew Pilewskie
EGUsphere, https://doi.org/10.5194/egusphere-2025-546, https://doi.org/10.5194/egusphere-2025-546, 2025
Short summary
Short summary
A constrained optimal estimation technique was developed to utilize space-borne hyperspectral measurements of reflected solar radiation for retrieving a vertical profile of cloud droplet size, providing insight into the internal structure of a cloud. The improved accuracy and, to a lesser extent, the enhanced spectral sampling provided by next-generation space-borne spectrometers are essential for extracting vertically resolved droplet size information from moderately thick, warm clouds.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Steffen Mauceri, Steven Massie, and Sebastian Schmidt
Atmos. Meas. Tech., 16, 1461–1476, https://doi.org/10.5194/amt-16-1461-2023, https://doi.org/10.5194/amt-16-1461-2023, 2023
Short summary
Short summary
The Orbiting Carbon Observatory-2 makes space-based measurements of reflected sunlight. Using a retrieval algorithm these measurements are converted to CO2 concentrations in the atmosphere. However, the converted CO2 concentrations contain errors for observations close to clouds. Using a simple machine learning approach, we developed a model to correct these remaining errors. The model is able to reduce errors over land and ocean by 20 % and 40 %, respectively.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Yohei Shinozuka, Meloë S. Kacenelenbogen, Sharon P. Burton, Steven G. Howell, Paquita Zuidema, Richard A. Ferrare, Samuel E. LeBlanc, Kristina Pistone, Stephen Broccardo, Jens Redemann, K. Sebastian Schmidt, Sabrina P. Cochrane, Marta Fenn, Steffen Freitag, Amie Dobracki, Michal Segal-Rosenheimer, and Connor J. Flynn
Atmos. Chem. Phys., 20, 11275–11285, https://doi.org/10.5194/acp-20-11275-2020, https://doi.org/10.5194/acp-20-11275-2020, 2020
Short summary
Short summary
To help satellite retrieval of aerosols and studies of their radiative effects, we demonstrate that daytime aerosol optical depth over low-level clouds is similar to that in neighboring clear skies at the same heights. Based on recent airborne lidar and sun photometer observations above the southeast Atlantic, the mean AOD difference at 532 nm is between 0 and -0.01, when comparing the cloudy and clear sides of cloud edges, with each up to 20 km wide.
Cited articles
Barkstrom, B. R.: The Earth Radiation Budget Experiment (ERBE), B. Am. Meteorol. Soc., 65, 1170–1185,
https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2, 1984.
Béland, S., Harder, J., and Woods, T.: Eleven years of tracking the
SORCE SIM instrument degradation caused by space radiation and solar
exposure, SPIE conference on Astronomical Telescopes + Instrumentation, 22–27 June 2014, Montreal, Quebec, Canada, SPIE, 91434W, https://doi.org/10.1117/12.2057385, 2014.
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den
Bosch, J.: MODTRAN® 6: A major upgrade of the
MODTRAN® radiative transfer code, Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, 24–27 June 2014, Lausanne, Switzerland, IEEE, https://doi.org/10.1109/WHISPERS.2014.8077573, 2014.
Carlson, B., Lacis, A., Colose, C., Marshak, A., Su, W., and Lorentz, S.:
Spectral Signature of the Biosphere: NISTAR Finds It in Our Solar System
From the Lagrangian L-1 Point, Geophys. Res. Lett., 46, 10679–10686,
https://doi.org/10.1029/2019GL083736, 2019.
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback
amplifies global warming, P. Natl. Acad. Sci. USA, 118, e2026290118,
https://doi.org/10.1073/pnas.2026290118, 2021.
Cesana, G. V. and del Genio, A. D.: Observational constraint on cloud
feedbacks suggests moderate climate sensitivity, Nat. Clim. Chang.,
11, 213–218, https://doi.org/10.1038/s41558-020-00970-y, 2021.
Chandrasekhar, S.: Radiative Transfer, Dover Publications, 416 pp., ISBN 978-0486605906, 1960.
Chen, H., Schmidt, K. S., Massie, S. T., Nataraja, V., Norgren, M. S., Gristey, J. J., Feingold, G., Holz, R. E., and Iwabuchi, H.: The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals, Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, 2023.
Collins, W. D., Lee-Taylor, J. M., Edwards, D. P., and Francis, G. L.:
Effects of increased near-infrared absorption by water vapor on the climate
system, J. Geophys. Res.-Atmos., 111, 18109, https://doi.org/10.1029/2005JD006796, 2006.
Corbett, J. and Su, W.: Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models, Atmos. Meas. Tech., 8, 3163–3175, https://doi.org/10.5194/amt-8-3163-2015, 2015.
Davies, R.: Spatial autocorrelation of radiation measured by the Earth
Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation,
J. Geophys. Res., 99, 20879–20887, https://doi.org/10.1029/94JD01680, 1994.
di Girolamo, L., Várnai, T., and Davies, R.: Apparent breakdown of
reciprocity in reflected solar radiances, J. Geophys. Res.-Atmos., 103, 8795–8803, https://doi.org/10.1029/98JD00345, 1998.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A.
W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B.,
and Verstraete, M. M.: Multi-angle imaging spectroradiometer (MISR)
instrument description and experiment overview, IEEE T. Geosci. Remote, 36, 1072–1087, https://doi.org/10.1109/36.700992, 1998.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016.
Feldman, D. R., Algieri, C. A., Ong, J. R., and Collins, W. D.: CLARREO
shortwave observing system simulation experiments of the twenty-first
century: Simulator design and implementation, J. Geophys. Res., 116, D10107,
https://doi.org/10.1029/2010JD015350, 2011a.
Feldman, D. R., Algieri, C. A., Collins, W. D., Roberts, Y. L., and
Pilewskie, P. A.: Simulation studies for the detection of changes in
broadband albedo and shortwave nadir reflectance spectra under a climate
change scenario, J. Geophys. Res.-Atmos., 116, D24103,
https://doi.org/10.1029/2011JD016407, 2011b.
Feldman, D. R., Collins, W. D., and Paige, J. L.: Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation, Geosci. Model Dev., 8, 1943–1954, https://doi.org/10.5194/gmd-8-1943-2015, 2015.
Forster, P. M. F. and Gregory, J. M.: The Climate Sensitivity and Its
Components Diagnosed from Earth Radiation Budget Data, J. Climate, 19, 39–52, https://doi.org/10.1175/JCLI3611.1, 2006.
Gottwald, M. and Bovensmann, H. (Eds.): SCIAMACHY – Exploring the Changing
Earth's Atmosphere, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-90-481-9896-2, 2011.
Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M.,
Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M.,
Olah, M. R., and Williams, O.: Imaging Spectroscopy and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS), Remote Sens. Environ., 65,
227–248, https://doi.org/10.1016/S0034-4257(98)00064-9, 1998.
Gristey, J. J. and Chiu, J. C.: Understanding our Climate System through the
Lens of Spectral Reflected Solar Radiation, in: International Radiation
Symposium, 4–8 July 2022, Thessaloniki, Greece, AIP Proceedings, in press, 2022.
Gristey, J. J., Chiu, J. C., Gurney, R. J., Shine, K. P., Havemann,
S., Thelen, J. C., and Hill, P. G.: Shortwave Spectral Radiative Signatures
and Their Physical Controls, J. Climate, 32, 4805–4828,
https://doi.org/10.1175/JCLI-D-18-0815.1, 2019.
Gristey, J. J., Su, W., Loeb, N. G., Vonder Haar, T. H., Tornow, F.,
Schmidt, K. S., Hakuba, M. Z., Pilewskie, P., and Russell, J. E.: Shortwave
Radiance to Irradiance Conversion for Earth Radiation Budget Satellite
Observations: A Review, Remote Sens., 13, 2640,
https://doi.org/10.3390/RS13132640, 2021.
Gristey, J. J., Schmidt, K. S., Chen, H., Feldman, D. R., Kindel, B. C., Mauss, J., van den Heever, M., Hakuba, M. Z., and Pilewskie, P.: Dataset for “Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth Radiation Budget satellite observations”, NOAA Chemical Sciences Laboratory [data set], https://csl.noaa.gov/groups/csl9/datasets/data/cloud_phys/2023-Gristey-etal/, last access: 3 August 2023.
Hakuba, M. Z., Kindel, B., Gristey, J. J., Bodas-Salcedo, A., Stephens, G.,
and Pilewskie, P.: Simulated variability in visible and near-IR irradiances
in preparation for the upcoming Libera mission, in: International Radiation
Symposium, 4–8 July 2022, Thessaloniki, Greece, AIP Proceedings, in press, 2022.
Harries, J. E., Russell, J. E., Hanafin, J. A., Brindley, H., Futyan, J.,
Rufus, J., Kellock, S., Matthews, G., Wrigley, R., Last, A., Mueller, J.,
Mossavati, R., Ashmall, J., Sawyer, E., Parker, D., Caldwell, M., Allan, P.
M., Smith, A., Bates, M. J., Coan, B., Stewart, B. C., Lepine, D. R.,
Cornwall, L. A., Corney, D. R., Ricketts, M. J., Drummond, D., Smart, D.,
Cutler, R., Dewitte, S., Clerbaux, N., Gonzalez, L., Ipe, A., Bertrand, C.,
Joukoff, A., Crommelynck, D., Nelms, N., Llewellyn-Jones, D. T., Butcher,
G., Smith, G. L., Szewczyk, Z. P., Mlynczak, P. E., Slingo, A., Allan, R.
P., and Ringer, M. A.: The Geostationary Earth Radiation Budget Project,
B. Am. Meteorol. Soc., 86, 945–960, https://doi.org/10.1175/BAMS-86-7-945, 2005.
Hartmann, D. L. and Ceppi, P.: Trends in the CERES Dataset, 2000–13: The
Effects of Sea Ice and Jet Shifts and Comparison to Climate Models, J. Climate, 27, 2444–2456, https://doi.org/10.1175/JCLI-D-13-00411.1, 2014.
Havemann, S., Thelen, J.-C., Taylor, J. P., and Harlow, R. C.: The
Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC): A multipurpose code
based on principal components, J. Quant. Spectrosc. Ra., 220,
180–192, https://doi.org/10.1016/J.JQSRT.2018.09.008, 2018.
Jacobowitz, H., Soule, H. V., Kyle, H. L., and House, F. B.: The Earth
Radiation Budget (ERB) Experiment: An overview, J. Geophys. Res.-Atmos., 89, 5021–5038, https://doi.org/10.1029/JD089iD04p05021, 1984.
Kandel, R., Viollier, M., Raberanto, P., Duvel, J. P., Pakhomov, L. A.,
Golovko, V. A., Trishchenko, A. P., Mueller, J., Raschke, E., Stuhlmann, R.
R., and the International ScaRaB Scientific Working Group (ISSWG): The ScaRaB Earth Radiation Budget Dataset, B. Am. Meteorol. Soc., 79, 765–783, https://doi.org/10.1175/1520-0477(1998)079<0765:TSERBD>2.0.CO;2, 1998.
Kramer, R. J., He, H., Soden, B. J., Oreopoulos, L., Myhre, G., Forster, P.
M., and Smith, C. J.: Observational Evidence of Increasing Global Radiative
Forcing, Geophys. Res. Lett., 48, e2020GL091585,
https://doi.org/10.1029/2020GL091585, 2021.
Kyle, H. L., Arking, A., Hickey, J. R., Ardanuy, P. E., Jacobowitz, H.,
Stowe, L. L., Campbell, G. G., Vonder Haar, T., House, F. B., Maschhoff, R.,
and Smith, G. L.: The Nimbus Earth Radiation Budget (ERB) Experiment: 1975
to 1992, B. Am. Meteorol. Soc., 74, 815–830,
https://doi.org/10.1175/1520-0477(1993)074<0815:TNERBE>2.0.CO;2, 1993.
Loeb, N. G. and Wielicki, B. A.: Satellites and Satellite Remote Sensing:
Earth's Radiation Budget, in: Encyclopedia of Atmospheric Sciences: Second
Edition, Elsevier Inc., 67–76, https://doi.org/10.1016/B978-0-12-382225-3.00349-2, 2015.
Loeb, N. G., Priestley, K. J., Kratz, D. P., Geier, E. B., Green, R. N.,
Wielicki, B. A., Hinton, P. O., and Nolan, S. K.: Determination of
Unfiltered Radiances from the Clouds and the Earth's Radiant Energy System
Instrument, J. Appl. Meteorol., 40, 822–835,
https://doi.org/10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2, 2001.
Loeb, N. G., Manalo-Smith, N., Kato, S., Miller, W. F., Gupta, S. K.,
Minnis, P., and Wielicki, B. A.: Angular Distribution Models for
Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's
Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission
Satellite. Part I: Methodology, J. Appl. Meteorol., 42,
240–265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2, 2003a.
Loeb, N. G., Loukachine, K., Manalo-Smith, N., Wielicki, B. A., and Young,
D. F.: Angular distribution models for top-of tmosphere radiative flux
estimation from the clouds and the Earth's Radiant Energy system instrument
on the Tropical Rainfall Measuring Mission satellite. Part II: Validation,
J. Appl. Meteorol., 42, 1748–1769,
https://doi.org/10.1175/1520-0450(2003)042<1748:ADMFTR>2.0.CO;2, 2003b.
Loeb, N. G., Kato, S., Loukachine, K., and Manalo-Smith, N.: Angular
Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the
Clouds and the Earth's Radiant Energy System Instrument on the Terra
Satellite. Part I: Methodology, J. Atmos. Ocean. Tech., 22, 338–351,
https://doi.org/10.1175/JTECH1712.1, 2005.
Loeb, N. G., Kato, S., Loukachine, K., Manalo-Smith, N., and Doelling, D.
R.: Angular distribution models for top-of-atmosphere radiative flux
estimation from the Clouds and the Earth's Radiant Energy System instrument
on the Terra Satellite. Part II: Validation, J. Atmos. Ocean. Tech., 24,
564–584, https://doi.org/10.1175/JTECH1983.1, 2007.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Minnis, P., Sun-Mack, S., Chen, Y., Chang, F. L., Yost, C. R., Smith, W. L.,
Heck, P. W., Arduini, R. F., Bedka, S. T., Yi, Y., Hong, G., Jin, Z.,
Painemal, D., Palikonda, R., Scarino, B. R., Spangenberg, D. A., Smith, R.
A., Trepte, Q. Z., Yang, P., and Xie, Y.: CERES MODIS Cloud Product
Retrievals for Edition 4 – Part I: Algorithm Changes, IEEE T. Geosci. Remote, 59, 2744–2780, https://doi.org/10.1109/TGRS.2020.3008866, 2021.
Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., and
Caldwell, P. M.: Observational constraints on low cloud feedback reduce
uncertainty of climate sensitivity, Nat. Clim. Chang., 11, 501–507,
https://doi.org/10.1038/s41558-021-01039-0, 2021.
Raghuraman, S. P., Paynter, D., and Ramaswamy, V.: Anthropogenic forcing and
response yield observed positive trend in Earth's energy imbalance, Nat.
Commun., 12, 1–10, https://doi.org/10.1038/s41467-021-24544-4, 2021.
Raschke, E. and Bandeen, W. R.: The Radiation Balance of the Planet Earth
from Radiation Measurements of the Satellite Nimbus II, J. Appl. Meteorol., 9, 215–238, https://doi.org/10.1175/1520-0450(1970)009<0215:trbotp>2.0.co;2, 1970.
Raschke, E., Vonder Haar, T. H., Bandeen, W. R., and Pasternak, M.: The
Annual Radiation Balance of the Earth-Atmosphere System During 1969–70 from
Nimbus 3 Measurements, J. Atmos. Sci., 30, 341–364,
https://doi.org/10.1175/1520-0469(1973)030<0341:TARBOT>2.0.CO;2, 1973.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: methodology, Atmos. Meas. Tech., 8, 611–632, https://doi.org/10.5194/amt-8-611-2015, 2015a.
Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation, Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, 2015b.
Suttles, J., Green, R., Minnis, P., Smith, G., Staylor, W., Wielicki, B.,
Walker, I., Young, D., Taylor, V., and Stowe, L.: Angular Radiation Models
for Earth-Atmosphere Systems, Vol. I Shortwave Radiation, Hampton, Technical report, https://ntrs.nasa.gov/citations/19880018293 (last access: 3 August 2023), 1988.
Tett, S. F. B., Rowlands, D. J., Mineter, M. J., and Cartis, C.: Can
Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part II: Climate Sensitivity, J. Climate, 26, 9367–9383,
https://doi.org/10.1175/JCLI-D-12-00596.1, 2013a.
Tett, S. F. B., Mineter, M. J., Cartis, C., Rowlands, D. J., and Liu, P.:
Can Top-of-Atmosphere Radiation Measurements Constrain Climate Predictions?
Part I: Tuning, J. Climate, 26, 9348–9366,
https://doi.org/10.1175/JCLI-D-12-00595.1, 2013b.
Trenberth, K. E.: An imperative for climate change planning: tracking
Earth's global energy, Curr. Opin. Environ. Sustain., 1, 19–27,
https://doi.org/10.1016/j.cosust.2009.06.001, 2009.
Trepte, Q. Z., Minnis, P., Sun-Mack, S., Yost, C. R., Chen, Y., Jin, Z.,
Hong, G., Chang, F. L., Smith, W. L., Bedka, K. M., and Chee, T. L.: Global
Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE
T. Geosci. Remote, 57, 9410–9449, https://doi.org/10.1109/TGRS.2019.2926620, 2019.
Vonder Haar, T. H. and Suomi, V. E.: Measurements of the Earth's Radiation
Budget from Satellites During a Five-Year Period. Part I: Extended Time and
Space Means, J. Atmos. Sci., 28, 305–314,
https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2, 1971.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Louis Smith,
G., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System (CERES):
An Earth Observing System Experiment, B. Am. Meteorol. Soc., 77, 853–868,
https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2, 1996.
Wielicki, B. A., Young, D. F., Mlynczak, M. G., Thome, K. J., Leroy, S.,
Corliss, J., Anderson, J. G., Ao, C. O., Bantges, R., Best, F., Bowman, K.,
Brindley, H., Butler, J. J., Collins, W., Dykema, J. A., Doelling, D. R.,
Feldman, D. R., Fox, N., Huang, X., Holz, R., Huang, Y., Jin, Z., Jennings,
D., Johnson, D. G., Jucks, K., Kato, S., Kirk-Davidoff, D. B., Knuteson, R.,
Kopp, G., Kratz, D. P., Liu, X., Lukashin, C., Mannucci, A. J.,
Phojanamongkolkij, N., Pilewskie, P., Ramaswamy, V., Revercomb, H., Rice,
J., Roberts, Y., Roithmayr, C. M., Rose, F., Sandford, S., Shirley, E. L.,
Smith, W. L., Soden, B., Speth, P. W., Sun, W., Taylor, P. C., Tobin, D.,
and Xiong, X.: Achieving Climate Change Absolute Accuracy in Orbit, B. Am.
Meteorol. Soc., 94, 1519–1539, https://doi.org/10.1175/BAMS-D-12-00149.1, 2013.
Wild, M., Folini, D., Hakuba, M. Z., Schär, C., Seneviratne, S. I.,
Kato, S., Rutan, D., Ammann, C., Wood, E. F., and König-Langlo, G.: The
energy balance over land and oceans: an assessment based on direct
observations and CMIP5 climate models, Clim. Dynam., 44, 3393–3429,
https://doi.org/10.1007/s00382-014-2430-z, 2015.
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of...