Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6697-2024
https://doi.org/10.5194/amt-17-6697-2024
Research article
 | 
25 Nov 2024
Research article |  | 25 Nov 2024

Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations

Jinyi Xia and Li Guan

Related authors

A Bias Correction Scheme for FY-3E/ HIRAS-II Observation Data Assimilation
Hongtao Chen and Li Guan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-65,https://doi.org/10.5194/amt-2024-65, 2024
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary

Cited articles

Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M., Murino, L. and Serio, C.: Statistical cloud detection from SEVIRI multispectral images, Remote Sens. Environ., 112, 750–766, https://doi.org/10.1016/j.rse.2007.06.004, 2008. 
Baum, B. and Trepte Q.: A Grouped Threshold Approach for Scene Identification in AVHRR Imagery, J. Atmos. Ocean. Technol., 16, 793–800, https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2, 1999. 
Breiman L.: Random Forests-Random Features [J], Machine Learn., 45, 5–32, 1999. 
Breiman, L.: Random Forests, Machine Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chai, D., Huang, J., Wu, M., Yang, X., and Wang, R.: Remote sensing image cloud detection using a shallow convolutional neural network[J], ISPRS J. Photogramm., 2024, 20966–20984, https://doi.org/10.1016/j.isprsjprs.2024.01.026, 2024. 
Download
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP)  algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.