Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6697-2024
https://doi.org/10.5194/amt-17-6697-2024
Research article
 | 
25 Nov 2024
Research article |  | 25 Nov 2024

Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations

Jinyi Xia and Li Guan

Related authors

A Bias Correction Scheme for FY-3E/ HIRAS-II Observation Data Assimilation
Hongtao Chen and Li Guan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-65,https://doi.org/10.5194/amt-2024-65, 2024
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary

Cited articles

Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M., Murino, L. and Serio, C.: Statistical cloud detection from SEVIRI multispectral images, Remote Sens. Environ., 112, 750–766, https://doi.org/10.1016/j.rse.2007.06.004, 2008. 
Baum, B. and Trepte Q.: A Grouped Threshold Approach for Scene Identification in AVHRR Imagery, J. Atmos. Ocean. Technol., 16, 793–800, https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2, 1999. 
Breiman L.: Random Forests-Random Features [J], Machine Learn., 45, 5–32, 1999. 
Breiman, L.: Random Forests, Machine Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chai, D., Huang, J., Wu, M., Yang, X., and Wang, R.: Remote sensing image cloud detection using a shallow convolutional neural network[J], ISPRS J. Photogramm., 2024, 20966–20984, https://doi.org/10.1016/j.isprsjprs.2024.01.026, 2024. 
Download
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP)  algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.