Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6697-2024
https://doi.org/10.5194/amt-17-6697-2024
Research article
 | 
25 Nov 2024
Research article |  | 25 Nov 2024

Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations

Jinyi Xia and Li Guan

Related authors

A Bias Correction Scheme for FY-3E/ HIRAS-II Observation Data Assimilation
Hongtao Chen and Li Guan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-65,https://doi.org/10.5194/amt-2024-65, 2024
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assessment of horizontally oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025,https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary
Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025,https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary

Cited articles

Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M., Murino, L. and Serio, C.: Statistical cloud detection from SEVIRI multispectral images, Remote Sens. Environ., 112, 750–766, https://doi.org/10.1016/j.rse.2007.06.004, 2008. 
Baum, B. and Trepte Q.: A Grouped Threshold Approach for Scene Identification in AVHRR Imagery, J. Atmos. Ocean. Technol., 16, 793–800, https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2, 1999. 
Breiman L.: Random Forests-Random Features [J], Machine Learn., 45, 5–32, 1999. 
Breiman, L.: Random Forests, Machine Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chai, D., Huang, J., Wu, M., Yang, X., and Wang, R.: Remote sensing image cloud detection using a shallow convolutional neural network[J], ISPRS J. Photogramm., 2024, 20966–20984, https://doi.org/10.1016/j.isprsjprs.2024.01.026, 2024. 
Download
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP)  algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Share