Articles | Volume 18, issue 18
https://doi.org/10.5194/amt-18-4839-2025
https://doi.org/10.5194/amt-18-4839-2025
Research article
 | 
26 Sep 2025
Research article |  | 26 Sep 2025

A hybrid algorithm for ship clutter identification in pulse compression polarimetric radar observations

Shuai Zhang, Haoran Li, Dmitri Moisseev, and Matti Leskinen

Related authors

Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024,https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024,https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024,https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary

Cited articles

Argenti, F. and Facheris, L.: Radar pulse compression methods based on nonlinear and quadratic optimization, IEEE T. Geosci. Remote, 59, 3904–3916, https://doi.org/10.1109/TGRS.2020.3010414, 2020. 
Bharadwaj, N. and Chandrasekar, V.: Wideband waveform design principles for solid-state weather radars, J. Atmos. Ocean. Tech., 29, 14–31, https://doi.org/10.1175/JTECH-D-11-00030.1, 2012. 
Billingsley, J. B.: Low-angle radar land clutter: Measurements and empirical models, IET, ISBN 9780852962305, 2002. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chen, Y., Zheng, H., Sun, T., Meng, D., Qin, L., and Yin, J.: Improving forecasts of the “21  7” Henan extreme rainfall event using a radar assimilation scheme that considers hydrometeor background error covariance, Mon. Weather Rev., 152, 1379–1397, https://doi.org/10.1175/MWR-D-23-0190.1, 2024. 
Download
Short summary
The data quality of weather radar near coastlines can be affected by echoes from ships, and this interference is exacerbated when pulse compression technology is used. This study developed a hybrid ship clutter identification algorithm based on artificial intelligence and heuristic criteria, effectively mitigating the issue. The successful reproduction of ship tracks in the Gulf of Finland supports this conclusion.
Share