Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5393-2025
https://doi.org/10.5194/amt-18-5393-2025
Research article
 | 
16 Oct 2025
Research article |  | 16 Oct 2025

Classifying thermodynamic cloud phase using machine learning models

Lexie Goldberger, Maxwell Levin, Carlandra Harris, Andrew Geiss, Matthew D. Shupe, and Damao Zhang

Related authors

Observational data from uncrewed systems over Southern Great Plains
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022,https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Modeling impacts of ice-nucleating particles from marine aerosols on mixed-phase orographic clouds during 2015 ACAPEX field campaign
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022,https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary
The role of coarse aerosol particles as a sink of HNO3 in wintertime pollution events in the Salt Lake Valley
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021,https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary

Cited articles

Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles, Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, 2020. 
Balmes, K. A., Sedlar, J., Riihimaki, L. D., Olson, J. B., Turner, D. D., and Lantz, K.: Regime-Specific Cloud Vertical Overlap Characteristics From Radar and Lidar Observations at the ARM Sites, Journal of Geophysical Research: Atmospheres, 128, https://doi.org/10.1029/2022JD037772, 2023. 
Barker, H. W., Korolev, A. V., Hudak, D. R., Strapp, J. W., Strawbridge, K. B., and Wolde, M.: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project, Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2008JD009971, 2008. 
Bishop, C. M.: Pattern recognition and machine learning, 4, 738 pp., New York, springer, 2006. 
Brast, M., and Markmann, P.: Detecting the melting layer with a micro rain radar using a neural network approach, Atmos. Meas. Tech., 13, 6645–6656, https://doi.org/10.5194/amt-13-6645-2020, 2020. 
Download
Short summary
This study leverages machine learning models to classify cloud thermodynamic phases using multi-sensor remote sensing data collected at the Department of Energy Atmospheric Radiation Measurement North Slope of Alaska observatory. We evaluate model performance, feature importance, and application of the model to another observatory and quantify how the models respond to instrument outages.
Share