Articles | Volume 18, issue 3
https://doi.org/10.5194/amt-18-737-2025
https://doi.org/10.5194/amt-18-737-2025
Research article
 | 
10 Feb 2025
Research article |  | 10 Feb 2025

A quality control method based on physical constraints and data-driven collaborative artificial intelligence for wind observations along high-speed railway lines

Xiong Xiong, Jiajun Chen, Yanchao Zhang, Xin Chen, Yingchao Zhang, and Xiaoling Ye

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Pre-launch calibration and validation of the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) instrument
Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukkudy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 17, 5709–5729, https://doi.org/10.5194/amt-17-5709-2024,https://doi.org/10.5194/amt-17-5709-2024, 2024
Short summary
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024,https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682, https://doi.org/10.5194/amt-16-1663-2023,https://doi.org/10.5194/amt-16-1663-2023, 2023
Short summary
Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements
Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer
Atmos. Meas. Tech., 15, 7337–7351, https://doi.org/10.5194/amt-15-7337-2022,https://doi.org/10.5194/amt-15-7337-2022, 2022
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary

Cited articles

Antonini, E. G., Romero, D. A., and Amon, C. H.: Improving CFD wind farm simulations incorporating wind direction uncertainty, Renew. Energ., 133, 1011–1023, 2019. 
Arens, E., Ghahramani, A., Przybyla, R., Andersen, M., Min, S., Peffer, T., Raftery, P., Zhu, M., Luu, V., and Zhang, H.: Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer, Energ. Buildings, 211, 109805, https://doi.org/10.1016/j.enbuild.2020.109805, 2020.​​​​​​​ 
Calzolari, G. and Liu, W.: Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review, Build. Environ., 206, 108315, https://doi.org/10.1016/j.buildenv.2021.108315, 2021.​​​​​​​ 
Chen, X., Ye, X., Xiong, X., Zhang, Y., and Li, Y.: Improving the accuracy of wind speed spatial interpolation: A pre-processing algorithm for wind speed dynamic time warping interpolation, Energy, 2024, 130876, https://doi.org/10.1016/j.energy.2024.130876, 2024.​​​​​​​ 
Cho, N., Lee, S., Kim, J., Kim, Y., Park, S., and Song, C.: Wind compensation framework for unpowered aircraft using online waypoint correction, IEEE T. Aero. Elec. Sys., 56, 698–710, 2019. 
Download
Short summary

This study introduces a novel quality control method, physical constraints and data-driven collaborative artificial intelligence (PD-BX), aimed at reducing wind speed measurement errors caused by the complex environments surrounding high-speed railway lines, thereby enhancing the accuracy and reliability of measurements.

Share