Articles | Volume 8, issue 11
https://doi.org/10.5194/amt-8-4931-2015
https://doi.org/10.5194/amt-8-4931-2015
Research article
 | 
24 Nov 2015
Research article |  | 24 Nov 2015

Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument

H. Shang, L. Chen, F. M. Bréon, H. Letu, S. Li, Z. Wang, and L. Su

Related authors

Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023,https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023,https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
DEVELOPMENT OF A DAYTIME CLOUD AND AEROSOL LOADINGS DETECTION ALGORITHM FOR HIMAWARI-8 SATELLITE MEASUREMENTS OVER DESERT
H. Shang, H. Letu, Z. Peng, and Z. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 61–66, https://doi.org/10.5194/isprs-archives-XLII-3-W5-61-2018,https://doi.org/10.5194/isprs-archives-XLII-3-W5-61-2018, 2018
HIMAWARI-8 GEOSTATIONARY SATELLITE OBSERVATION OF THE INTERNAL SOLITARY WAVES IN THE SOUTH CHINA SEA
Q. Gao, D. Dong, X. Yang, L. Husi, and H. Shang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 363–370, https://doi.org/10.5194/isprs-archives-XLII-3-363-2018,https://doi.org/10.5194/isprs-archives-XLII-3-363-2018, 2018

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary

Cited articles

Alexandrov, M. D. and Lacis, A. A.: A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function, Appl. Math. Comput., 116, 153–165, 2000.
Alexandrov, M. D., Cairns, B., Emde, C., Ackerman, A. S., and van Diedenhoven, B.: Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter, Remote Sens. Environ., 125, 92–111, https://doi.org/10.1016/j.rse.2012.07.012, 2012a.
Alexandrov, M. D., Cairns, B., and Mishchenko, M. I.: Rainbow Fourier transform, J. Quant. Spectrosc. Ra., 113, 2521–2535, 2012b.
Alexandrov, M. D., Cairns, B., Wasilewski, A. P., Ackerman, A. S., McGill, M. J., Yorks, J. E., Hlavka, D. L., Platnick, S. E., Thomas Arnold, G., van Diedenhoven, B., Chowdhary, J., Ottaviani, M., and Knobelspiesse, K. D.: Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX), Remote Sens. Environ., 169, 20–36, https://doi.org/10.1016/j.rse.2015.07.029, 2015.
Baum, B. A., Kratz, D. P., Yang, P., Ou, S. C., Hu, Y. X., Soulen, P. F., and Tsay, S. C.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models, J. Geophys. Res.-Atmos., 105, 11767–11780, https://doi.org/10.1029/1999jd901089, 2000.
Download
Short summary
The cloud droplet size retrieval of POLDER is accurate even when the measurements are limited. The algorithm can be improved by (1) including the measurements in the primary rainbow region to provide accurate large droplet (>15 µm) retrievals; (2) performing higher-resolution retrieval (42 km × 42 km) to ensure more successful retrievals and reduce the bias introduced by cloud horizontal inhomogeneity.
Share