Articles | Volume 9, issue 8
https://doi.org/10.5194/amt-9-3837-2016
https://doi.org/10.5194/amt-9-3837-2016
Research article
 | 
18 Aug 2016
Research article |  | 18 Aug 2016

Close-range radar rainfall estimation and error analysis

C. Z. van de Beek, H. Leijnse, P. Hazenberg, and R. Uijlenhoet

Related authors

Rain-on-wet-soil compound floods in lowlands: the combined effect of large rain events and shallow groundwater on discharge peaks in a changing climate
Claudia C. Brauer, Ruben O. Imhoff, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1712,https://doi.org/10.5194/egusphere-2025-1712, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Torrential rainfall in Valencia (Spain) recorded by personal weather stations preceding and during the 29 October 2024 floods
Nathalie Rombeek, Markus Hrachowitz, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1502,https://doi.org/10.5194/egusphere-2025-1502, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Evaporation measurements using commercial microwave links as scintillometers
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128,https://doi.org/10.5194/egusphere-2025-1128, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
The Dutch real-time gauge-adjusted radar precipitation product
Aart Overeem, Hidde Leijnse, Mats Veldhuizen, and Bastiaan Anker
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-160,https://doi.org/10.5194/essd-2025-160, 2025
Preprint under review for ESSD
Short summary
Barriers of urban hydro-meteorological simulation: a review
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3988,https://doi.org/10.5194/egusphere-2024-3988, 2025
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary
Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
Atmos. Meas. Tech., 18, 1961–1979, https://doi.org/10.5194/amt-18-1961-2025,https://doi.org/10.5194/amt-18-1961-2025, 2025
Short summary
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025,https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025,https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025,https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary

Cited articles

Andrieu, H., Delrieu, G., and Creutin, J.-D.: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method, Part 2: Sensitivity analysis and case study, J. Appl. Meteorol., 34, 240–259, 1995.
Andrieu, H., Creutin, J.-D., and Faure, D.: Use of a weather radar for the hydrology of a mountainous area, Part I: Radar measurement interpretation, J. Hydrol., 193, 1–25, 1997.
Battan, L. J.: Radar Observation of the Atmosphere, University of Chicago Press, 324 pp., 1973.
Beekhuis, H. and Holleman, I.: From pulse to product, highlights of the digital-IF upgrade of the Dutch national radar network, Proceedings of the 5th European Conference on Radar in Meteorology and Hydrology, Helsinki, Finland, 30 June–4 July, 2008.
Beekhuis, H. and Leijnse, H.: An operational radar monitoring tool, proceedings of the 7th European Conference on Radar in Meteorology and Hydrology, Toulouse, France, paper 47DQ, 25–29 June, 2012.
Download
Short summary
Quantitative precipitation estimation using weather radar is affected by many sources of error. This study is an attempt to separate and quantify sources of error very close to the radar. A 3-day event is analyzed using radar, rain gauge and disdrometer data. Without correction, the radar severely underestimates the total rain amount by more than 50 %. After correction for the errors, a good match with rain gauge measurements is found, with 5 to 8 % difference.
Share