Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Community Cloud retrieval for CLimate (CC4CL) – Part 1: A framework applied to multiple satellite imaging sensors
Oliver Sus
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Stefan Stapelberg
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Gregory McGarragh
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Caroline Poulsen
RAL Space – Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
Adam C. Povey
National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Cornelia Schlundt
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Gareth Thomas
RAL Space – Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
Matthew Christensen
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
RAL Space – Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
Simon Proud
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Matthias Jerg
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Roy Grainger
National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Rainer Hollmann
DWD – Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Related authors
No articles found.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Elisa Carboni, Gareth E. Thomas, Richard Siddans, and Brian Kerridge
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-232, https://doi.org/10.5194/amt-2023-232, 2023
Preprint under review for AMT
Short summary
Short summary
We analyzed different satellite datasets of cloud properties with a new approach to quantify and interpret their interannual variability based on singular vector decomposition (SVD). The spatial pattern and its temporal evolution are strikingly similar for all the satellite datasets and follow the El Nino Southern Oscillation. The SVD approach reported here has potential for application to satellite data sets and to evaluate consistency between models and observations.
Cunbo Han, Corinna Hoose, Martin Stengel, Quentin Coopman, and Andrew Barrett
Atmos. Chem. Phys., 23, 14077–14095, https://doi.org/10.5194/acp-23-14077-2023, https://doi.org/10.5194/acp-23-14077-2023, 2023
Short summary
Short summary
Cloud phase has been found to significantly impact cloud thermodynamics and Earth’s radiation budget, and various factors influence it. This study investigates the sensitivity of the cloud-phase distribution to the ice-nucleating particle concentration and thermodynamics. Multiple simulation experiments were performed using the ICON model at the convection-permitting resolution of 1.2 km. Simulation results were compared to two different retrieval products based on SEVIRI measurements.
Daniel Jamie Victor Robbins, Caroline Poulsen, Steven Siems, Simon Proud, Andrew Prata, Roy Grainger, and Adam Povey
EGUsphere, https://doi.org/10.5194/egusphere-2023-2179, https://doi.org/10.5194/egusphere-2023-2179, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Extreme wildfire events, which are becoming more common with climate change, produce smoke plumes which are not captured by current operational satellite products due to their very high optical thicknesses. We have developed a novel aerosol retrieval for the the Advanced Himawari Imager to study these plumes in full, finding very high values of optical thickness not seen in other operational satellite products and suggesting these plumes have been missed in previous studies.
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-424, https://doi.org/10.5194/essd-2023-424, 2023
Preprint under review for ESSD
Short summary
Short summary
CCClim displays observations of clouds in terms of cloud classes that have been in use for a long time. CCClim is a machine-learning-powered product based on multiple existing observational products from different satellites. We show that the cloud classes in CCClim are physically meaningful and can be used to study cloud characteristics in more detail. The goal of this is to make real-world clouds more easily understandable to eventually improve the simulation of clouds in climate models.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
EGUsphere, https://doi.org/10.5194/egusphere-2023-2161, https://doi.org/10.5194/egusphere-2023-2161, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth Systems Model estimates of the radiative forcing due to the interactions of aerosols with clouds due to warm rain processes.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
EGUsphere, https://doi.org/10.5194/egusphere-2023-2416, https://doi.org/10.5194/egusphere-2023-2416, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It’s therefore prudent to account for cloud fraction changes in assessments of aerosol-cloud interactions to improve predictions of climate change.
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023, https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model-predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Rui Song, Adam Povey, and Roy G. Grainger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2252, https://doi.org/10.5194/egusphere-2023-2252, 2023
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting Earth's climate. Using data from two lidar-equipped satellites, we examined a 2020 Saharan dust event. The newer ALADIN satellite's results aligned with the CALIOP satellite. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
William K. Jones, Martin Stengel, and Philip Stier
EGUsphere, https://doi.org/10.5194/egusphere-2023-2059, https://doi.org/10.5194/egusphere-2023-2059, 2023
Short summary
Short summary
Storm clouds cover large areas of the tropics. These clouds both reflect incoming sunlight and trap heat from the atmosphere below, regulating the temperature of the tropics. Over land, storm clouds occur in the late afternoon and evening, and so exist both during the daytime and at night. Changes in this timing could upset the balance of the respective cooling and heating effects of these clouds. We find that isolated storms have a larger effect on this balance than their small size suggests.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech., 16, 1043–1059, https://doi.org/10.5194/amt-16-1043-2023, https://doi.org/10.5194/amt-16-1043-2023, 2023
Short summary
Short summary
Geostationary weather satellites have been used to detect storm clouds since their earliest applications. However, this task remains difficult as imaging satellites cannot observe the strong vertical winds that are characteristic of storm clouds. Here we introduce a new method that allows us to detect the early development of storms and continue to track them throughout their lifetime, allowing us to study how their early behaviour affects subsequent weather.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Guy Dagan, Philip Stier, Matthew Christensen, Guido Cioni, Daniel Klocke, and Axel Seifert
Atmos. Chem. Phys., 20, 4523–4544, https://doi.org/10.5194/acp-20-4523-2020, https://doi.org/10.5194/acp-20-4523-2020, 2020
Short summary
Short summary
In order to better understand the physical processes behind aerosol effects on the atmospheric energy budget, we analyse numerical simulations of tropical cloud systems. Two sets of simulations, at different dates during the NARVAL 2 field campaign, are simulated with different dominant cloud modes. Our results demonstrate that under different environmental conditions, the response of the atmospheric energy budget to aerosol perturbation could be different.
Steven J. Abel, Paul A. Barrett, Paquita Zuidema, Jianhao Zhang, Matt Christensen, Fanny Peers, Jonathan W. Taylor, Ian Crawford, Keith N. Bower, and Michael Flynn
Atmos. Chem. Phys., 20, 4059–4084, https://doi.org/10.5194/acp-20-4059-2020, https://doi.org/10.5194/acp-20-4059-2020, 2020
Short summary
Short summary
In situ measurements of a free-tropospheric (FT) biomass burning aerosol plume in contact with the boundary layer inversion overriding a pocket of open cells (POC) and surrounding stratiform cloud are presented. The data highlight the contrasting thermodynamic, aerosol and cloud properties in the two cloud regimes and further demonstrate that the cloud regime plays a key role in regulating the flow of FT aerosols into the boundary layer, which has implications for the aerosol indirect effect.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys., 20, 457–474, https://doi.org/10.5194/acp-20-457-2020, https://doi.org/10.5194/acp-20-457-2020, 2020
Short summary
Short summary
In this study we analyse aerosol and cloud changes over southern China from 2006 to 2015 and investigate their possible interaction mechanisms. Results show decreasing aerosol loads and increasing liquid cloud cover in late autumn. Further analysis based on various satellite data sets shows consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in the evaporation of cloud droplets, thus increasing cloud amount.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, https://doi.org/10.5194/essd-12-41-2020, 2020
Short summary
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Short summary
We present tobac (Tracking and Object-Based Analysis of Clouds), a newly developed framework for tracking and analysing clouds in different types of datasets. It provides a flexible new way to include the evolution of individual clouds in a wide range of analyses. It is developed as a community project to provide a common basis for the inclusion of existing tracking algorithms and the development of new analyses that involve tracking clouds and other features in geoscientific research.
Nikos Benas, Jan Fokke Meirink, Martin Stengel, and Piet Stammes
Atmos. Meas. Tech., 12, 2863–2879, https://doi.org/10.5194/amt-12-2863-2019, https://doi.org/10.5194/amt-12-2863-2019, 2019
Short summary
Short summary
Cloud glory and bow phenomena cause irregularities in satellite-based retrievals of cloud optical and microphysical properties. Here we combine two geostationary satellites over the same areas to analyze retrievals under those conditions. Results show a high sensitivity of retrievals to the assumed width of the cloud droplet size distribution and provide insights into possible improvements in satellite retrievals by appropriately adjusting this assumed parameter.
Edward Gryspeerdt, Tom Goren, Odran Sourdeval, Johannes Quaas, Johannes Mülmenstädt, Sudhakar Dipu, Claudia Unglaub, Andrew Gettelman, and Matthew Christensen
Atmos. Chem. Phys., 19, 5331–5347, https://doi.org/10.5194/acp-19-5331-2019, https://doi.org/10.5194/acp-19-5331-2019, 2019
Short summary
Short summary
The liquid water path (LWP) is the strongest control on cloud albedo, such that a small change in LWP can have a large radiative impact. By changing the droplet number concentration (Nd) aerosols may be able to change the LWP, but the sign and magnitude of the effect is unclear. This work uses satellite data to investigate the relationship between Nd and LWP at a global scale and in response to large aerosol perturbations, suggesting that a strong decrease in LWP at high Nd may be overestimated.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019, https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
Short summary
The 2014–2015 Holuhraun eruption was the largest in Iceland for 200 years, emitting huge quantities of gas into the troposphere, at times overwhelming European anthropogenic emissions. Infrared Atmospheric sounding Interferometer data are used to derive the first time series of daily sulfur dioxide mass and vertical distribution over the eruption period. A scheme is used to estimate sulfur dioxide fluxes, the total erupted mass, and how long the sulfur dioxide remains in the atmosphere.
Salomon Eliasson, Karl Göran Karlsson, Erik van Meijgaard, Jan Fokke Meirink, Martin Stengel, and Ulrika Willén
Geosci. Model Dev., 12, 829–847, https://doi.org/10.5194/gmd-12-829-2019, https://doi.org/10.5194/gmd-12-829-2019, 2019
Short summary
Short summary
To enable fair comparisons of clouds between climate models and the
ESA Cloud_cci climate data record (CDR), we present a tool called the
Cloud_cci simulator. The tool takes into account the geometry and
cloud detection capabilities of the Cloud_cci CDR to allow fair
comparisons. We demonstrate the simulator on two climate models. We
find the impact of time sampling has a large effect on simulated cloud
water amount and that the simulator reduces the cloud cover by about
10 % globally.
Soheila Jafariserajehlou, Linlu Mei, Marco Vountas, Vladimir Rozanov, John P. Burrows, and Rainer Hollmann
Atmos. Meas. Tech., 12, 1059–1076, https://doi.org/10.5194/amt-12-1059-2019, https://doi.org/10.5194/amt-12-1059-2019, 2019
Short summary
Short summary
We developed a new algorithm for cloud identification over the Arctic. This algorithm called ASCIA, utilizes time-series measurements of Advanced Along-Track Scanning Radiometer (AATSR) on Envisat and Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3A and -3B.
The data product of ASCIA is compared with three satellite products: ASCIA shows an improved performance compared to them. We validated ASCIA by ground-based measurements and a promising agreement is achieved.
Martin Stengel, Cornelia Schlundt, Stefan Stapelberg, Oliver Sus, Salomon Eliasson, Ulrika Willén, and Jan Fokke Meirink
Atmos. Chem. Phys., 18, 17601–17614, https://doi.org/10.5194/acp-18-17601-2018, https://doi.org/10.5194/acp-18-17601-2018, 2018
Short summary
Short summary
We present a new approach to evaluate ERA-Interim reanalysis clouds using satellite observations. A simplified satellite simulator was developed that uses reanalysis fields to emulate clouds as they would have been seen by those satellite sensors which were used to compose Cloud_cci observational cloud datasets. Our study facilitates an adequate evaluation of modelled ERA-Interim clouds using observational datasets, also taking into account systematic uncertainties in the observations.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-554, https://doi.org/10.5194/acp-2018-554, 2018
Preprint withdrawn
Short summary
Short summary
In this study we analyse aerosol and cloud changes over South China and investigate their possible interactions. The results show decreasing aerosol loads and increasing liquid clouds. Further analysis of these changes based on various satellite data sets show consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in evaporation of cloud droplets, thus increasing cloud amount and cover.
Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger
Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018, https://doi.org/10.5194/amt-11-3397-2018, 2018
Short summary
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.
Michael Keller, Nico Kröner, Oliver Fuhrer, Daniel Lüthi, Juerg Schmidli, Martin Stengel, Reto Stöckli, and Christoph Schär
Atmos. Chem. Phys., 18, 5253–5264, https://doi.org/10.5194/acp-18-5253-2018, https://doi.org/10.5194/acp-18-5253-2018, 2018
Short summary
Short summary
Deep convection is often associated with thunderstorms and heavy rain events. In this study, the sensitivity of Alpine deep convective events to environmental parameters and climate warming is investigated. To this end, simulations are conducted at resolutions of 12 and 2 km. The results show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences are found in terms of the radiative feedbacks.
Uwe Pfeifroth, Jedrzej S. Bojanowski, Nicolas Clerbaux, Veronica Manara, Arturo Sanchez-Lorenzo, Jörg Trentmann, Jakub P. Walawender, and Rainer Hollmann
Adv. Sci. Res., 15, 31–37, https://doi.org/10.5194/asr-15-31-2018, https://doi.org/10.5194/asr-15-31-2018, 2018
Short summary
Short summary
Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. Trends in EUMETSAT CM SAF satellite-based climate data records of solar radiation and clouds are analysed during 1992–2015 in Europe. More surface solar radiation and less top-of-atmosphere reflected radiation and cloud cover is found. This study indicates that one of the main reasons for the positive trend in surface solar radiation is a decrease in cloud cover.
Julian Liman, Marc Schröder, Karsten Fennig, Axel Andersson, and Rainer Hollmann
Atmos. Meas. Tech., 11, 1793–1815, https://doi.org/10.5194/amt-11-1793-2018, https://doi.org/10.5194/amt-11-1793-2018, 2018
Short summary
Short summary
Latent heat fluxes (LHF) play a major role in the climate system. Over open ocean, they are increasingly observed by satellite instruments. To access their quality, this research focuses on thorough uncertainty analysis of all LHF-related variables of the HOAPS satellite climatology, in parts making use of novel analysis approaches. Results indicate climatological LHF uncertainies up to 50 W m−2, whereby underlying specific humidities tend to be more uncertain than contributing wind speeds.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Short summary
We present new cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS. Retrieval systems were developed that include cloud detection and cloud typing followed by optimal estimation retrievals of cloud properties (e.g. cloud-top pressure, effective radius, optical thickness, water path). Special features of all datasets are spectral consistency and rigorous uncertainty propagation from pixel-level data to monthly properties.
David Neubauer, Matthew W. Christensen, Caroline A. Poulsen, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 13165–13185, https://doi.org/10.5194/acp-17-13165-2017, https://doi.org/10.5194/acp-17-13165-2017, 2017
Short summary
Short summary
When aerosol particles take up water their number may seem to be increased optically. However if aerosol particles are removed by precipitation (formation) their numbers will decrease. We applied methods to account for such effects in model and satellite data to analyse the change in cloud properties by changes in aerosol particle number. The agreement of model and satellite data improves when these effects are accounted for.
Matthew W. Christensen, David Neubauer, Caroline A. Poulsen, Gareth E. Thomas, Gregory R. McGarragh, Adam C. Povey, Simon R. Proud, and Roy G. Grainger
Atmos. Chem. Phys., 17, 13151–13164, https://doi.org/10.5194/acp-17-13151-2017, https://doi.org/10.5194/acp-17-13151-2017, 2017
Short summary
Short summary
The cloud-aerosol pairing algorithm (CAPA) is developed to quantify the impact of near-cloud aerosol retrievals on satellite-based aerosol–cloud statistical relationships. We find that previous satellite-based radiative forcing estimates of aerosol–cloud interactions represented in key climate reports are likely exaggerated by up to 50 % due to including retrieval artefacts in the aerosols located near clouds. It is demonstrated that this retrieval artefact can be corrected in current products.
Georgina M. Miles, Richard Siddans, Roy G. Grainger, Alfred J. Prata, Bradford Fisher, and Nickolay Krotkov
Atmos. Meas. Tech., 10, 2687–2702, https://doi.org/10.5194/amt-10-2687-2017, https://doi.org/10.5194/amt-10-2687-2017, 2017
Short summary
Short summary
Volcanic eruptions are important in the way they perturb the climate and help us understand atmospheric processes. We show a new method to measure the SO2 released by explosive volcanic eruptions using the HIRS/2 satellite instrument, which measured atmospheric temperature and H2O. We apply the technique to the 1991 eruption of Cerro Hudson and show it is possible to detect SO2 with a good degree of accuracy. This method and instrument can potentially generate a climate-significant record.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Nikos Benas, Stephan Finkensieper, Martin Stengel, Gerd-Jan van Zadelhoff, Timo Hanschmann, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, https://doi.org/10.5194/essd-9-415-2017, 2017
Short summary
Short summary
This study focuses on an evaluation of CLAAS-2 (Cloud property dAtAset using SEVIRI, Edition 2), which was created based on observations from geostationary Meteosat satellites. Using a variety of reference datasets, very good overall agreement is found. This suggests the usefulness of CLAAS-2 in applications ranging from high spatial and temporal resolution cloud process studies to the evaluation of regional climate models.
Sarah Taylor, Philip Stier, Bethan White, Stephan Finkensieper, and Martin Stengel
Atmos. Chem. Phys., 17, 7035–7053, https://doi.org/10.5194/acp-17-7035-2017, https://doi.org/10.5194/acp-17-7035-2017, 2017
Short summary
Short summary
Variability of convective cloud spans a wide range of temporal and spatial scales and is important for global weather and climate. This study uses satellite data from SEVIRI to quantify the diurnal cycle of cloud top temperatures over a large area. Results indicate that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. These results may interest both the observation and modelling communities.
Julius Vira, Elisa Carboni, Roy G. Grainger, and Mikhail Sofiev
Geosci. Model Dev., 10, 1985–2008, https://doi.org/10.5194/gmd-10-1985-2017, https://doi.org/10.5194/gmd-10-1985-2017, 2017
Short summary
Short summary
The vertical and temporal distributions of sulfur dioxide emissions during the 2010 eruption of Eyjafjallajökull were reconstructed by combining data from the IASI satellite instrument with a dispersion model. Unlike in previous studies, both column density (the total amount above a given point) and the plume height were derived from the satellite data. This resulted in more accurate simulated vertical distributions for the times when the emission was not constrained by the column densities.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Short summary
The microwave radiometers (MWR) on board ERS-1, ERS-2, and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001.
Dimitris Balis, Maria-Elissavet Koukouli, Nikolaos Siomos, Spyridon Dimopoulos, Lucia Mona, Gelsomina Pappalardo, Franco Marenco, Lieven Clarisse, Lucy J. Ventress, Elisa Carboni, Roy G. Grainger, Ping Wang, Gijsbert Tilstra, Ronald van der A, Nicolas Theys, and Claus Zehner
Atmos. Chem. Phys., 16, 5705–5720, https://doi.org/10.5194/acp-16-5705-2016, https://doi.org/10.5194/acp-16-5705-2016, 2016
Short summary
Short summary
The ESA-funded SACS-2 and SMASH projects developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. These estimates were validated using ground-based and aircraft lidar measurements. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets. The IASI data show a better consistency concerning the ash optical depth and ash layer height.
Elisa Carboni, Roy G. Grainger, Tamsin A. Mather, David M. Pyle, Gareth E. Thomas, Richard Siddans, Andrew J. A. Smith, Anu Dudhia, Mariliza E. Koukouli, and Dimitrios Balis
Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, https://doi.org/10.5194/acp-16-4343-2016, 2016
Short summary
Short summary
The Infrared Atmospheric Sounding Interferometer (IASI) can be used to study volcanic emission of sulfur dioxide (SO2), returning both SO2 amount and altitude data. The series of analyzed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grimsvotn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause. This tendency was independent of the maximum amount of SO2 and of the volcanic explosive index.
Daniel Fisher, Caroline A. Poulsen, Gareth E. Thomas, and Jan-Peter Muller
Atmos. Meas. Tech., 9, 909–928, https://doi.org/10.5194/amt-9-909-2016, https://doi.org/10.5194/amt-9-909-2016, 2016
Short summary
Short summary
Observational data sets of cloud characteristics are of key importance in climate science for reducing uncertainty when predicting the future state of the Earth's climate. Here we present a composite method of observing cloud from the Advanced Along Track Scanning Radiometer, employing both radiometric and geometric approaches. Using this method we find improved accuracy for resolving the cloud top height for very-low and high clouds accompanied by small changes in the microphysical parameters.
A. C. Povey and R. G. Grainger
Atmos. Meas. Tech., 8, 4699–4718, https://doi.org/10.5194/amt-8-4699-2015, https://doi.org/10.5194/amt-8-4699-2015, 2015
Short summary
Short summary
Clear communication of the uncertainty on data is necessary for users to make appropriate use of it. This paper discusses the representation of uncertainty in satellite observations of the environment, arguing that the dominant sources of error are assumptions made during data analysis. The resulting uncertainty may be more usefully represented using ensemble techniques (a set of analyses using different assumptions to illustrate their impact) than with traditional statistical metrics.
M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel
Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, https://doi.org/10.5194/acp-15-6127-2015, 2015
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015, https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) are instruments on the 1.30 pm polar
orbiting Aqua spacecraft. We describe a daytime estimation of dust and
volcanic ash layer heights, using a retrieval algorithm that uses the
information in the AIRS L1B thermal infrared data, constrained by the
MODIS L2 aerosol optical depths. CALIOP aerosol centroid heights are
used for dust height comparisons, as are AATSR volcanic plume heights.
S. K. Ebmeier, A. M. Sayer, R. G. Grainger, T. A. Mather, and E. Carboni
Atmos. Chem. Phys., 14, 10601–10618, https://doi.org/10.5194/acp-14-10601-2014, https://doi.org/10.5194/acp-14-10601-2014, 2014
A. J. A. Smith and R. G. Grainger
Atmos. Chem. Phys., 14, 7825–7836, https://doi.org/10.5194/acp-14-7825-2014, https://doi.org/10.5194/acp-14-7825-2014, 2014
R. Lindstrot, M. Stengel, M. Schröder, J. Fischer, R. Preusker, N. Schneider, T. Steenbergen, and B. R. Bojkov
Earth Syst. Sci. Data, 6, 221–233, https://doi.org/10.5194/essd-6-221-2014, https://doi.org/10.5194/essd-6-221-2014, 2014
M. Stengel, A. Kniffka, J. F. Meirink, M. Lockhoff, J. Tan, and R. Hollmann
Atmos. Chem. Phys., 14, 4297–4311, https://doi.org/10.5194/acp-14-4297-2014, https://doi.org/10.5194/acp-14-4297-2014, 2014
A. Kniffka, M. Stengel, M. Lockhoff, R. Bennartz, and R. Hollmann
Atmos. Meas. Tech., 7, 887–905, https://doi.org/10.5194/amt-7-887-2014, https://doi.org/10.5194/amt-7-887-2014, 2014
A. C. Povey, R. G. Grainger, D. M. Peters, and J. L. Agnew
Atmos. Meas. Tech., 7, 757–776, https://doi.org/10.5194/amt-7-757-2014, https://doi.org/10.5194/amt-7-757-2014, 2014
B. S. Grandey, P. Stier, R. G. Grainger, and T. M. Wagner
Atmos. Chem. Phys., 13, 10689–10701, https://doi.org/10.5194/acp-13-10689-2013, https://doi.org/10.5194/acp-13-10689-2013, 2013
T. Holzer-Popp, G. de Leeuw, J. Griesfeller, D. Martynenko, L. Klüser, S. Bevan, W. Davies, F. Ducos, J. L. Deuzé, R. G. Graigner, A. Heckel, W. von Hoyningen-Hüne, P. Kolmonen, P. Litvinov, P. North, C. A. Poulsen, D. Ramon, R. Siddans, L. Sogacheva, D. Tanre, G. E. Thomas, M. Vountas, J. Descloitres, J. Griesfeller, S. Kinne, M. Schulz, and S. Pinnock
Atmos. Meas. Tech., 6, 1919–1957, https://doi.org/10.5194/amt-6-1919-2013, https://doi.org/10.5194/amt-6-1919-2013, 2013
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
G. E. Thomas, N. Chalmers, B. Harris, R. G. Grainger, and E. J. Highwood
Atmos. Chem. Phys., 13, 393–410, https://doi.org/10.5194/acp-13-393-2013, https://doi.org/10.5194/acp-13-393-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
Evaluation of Four Ground-based Retrievals of Cloud Droplet Number Concentration in Marine Stratocumulus with Aircraft In Situ Measurements
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Optical and microphysical properties of ice crystals in Arctic clouds from lidar observations
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Liquid cloud optical property retrieval and associated uncertainties using multi-angular and bispectral measurements of the airborne radiometer OSIRIS
Global evaluation of Doppler velocity errors of EarthCARE cloud-profiling radar using a global storm-resolving simulation
Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product
Cloud mask algorithm from the EarthCARE Multi-Spectral Imager: the M-CM products
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Optimizing cloud motion estimation on the edge with phase correlation and optical flow
A semi-Lagrangian method for detecting and tracking deep convective clouds in geostationary satellite observations
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
The CHROMA cloud-top pressure retrieval algorithm for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission
High-spatial-resolution retrieval of cloud droplet size distribution from polarized observations of the cloudbow
Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network
Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Ice water path retrievals from Meteosat-9 using quantile regression neural networks
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network
Top-of-the-atmosphere reflected shortwave radiative fluxes from GOES-R
Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
A kriging-based analysis of cloud liquid water content using CloudSat data
High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
The surface longwave cloud radiative effect derived from space lidar observations
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Damao Zhang, Andrew Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
EGUsphere, https://doi.org/10.5194/egusphere-2023-1364, https://doi.org/10.5194/egusphere-2023-1364, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help to quantify retrieval uncertainties and identify reliable retrieval scenarios.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-122, https://doi.org/10.5194/amt-2023-122, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The vertical profiles of effective radius of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Anja Hünerbein, Sebastian Bley, Stefan Horn, Hartwig Deneke, and Andi Walther
Atmos. Meas. Tech., 16, 2821–2836, https://doi.org/10.5194/amt-16-2821-2023, https://doi.org/10.5194/amt-16-2821-2023, 2023
Short summary
Short summary
The Multi-Spectral Imager (MSI) on board the EarthCARE satellite will provide the information needed for describing the cloud and aerosol properties in the cross-track direction, complementing the measurements from the Cloud Profiling Radar, Atmospheric Lidar and Broad-Band Radiometer. The accurate discrimination between clear and cloudy pixels is an essential first step. Therefore, the cloud mask algorithm provides a cloud flag, cloud phase and cloud type product for the MSI observations.
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023, https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Short summary
This paper describes EarthCARE’s L2 product ACM-3D. It includes the scene construction algorithm (SCA) used to produce the indexes for reconstructing 3D atmospheric scene based on satellite nadir retrievals. It also provides the information about the buffer zone sizes of 3D assessment domains and the ranking scores for selecting the best 3D assessment domains. These output variables are needed to run 3D radiative transfer models for the radiative closure assessment of EarthCARE’s L2 retrievals.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023, https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
Short summary
Forward modeling of spaceborne millimeter-wave radar composed of eight submodules is presented. We quantify the uncertainties in radar reflectivity that may be caused by the physical model parameters via a sensitivity analysis. The simulations with improved and conventional settings are compared with CloudSat data, and the simulation results are evaluated and analyzed. The results are instructive to the optimization of forward modeling and microphysical parameter retrieval.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-327, https://doi.org/10.5194/egusphere-2023-327, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically-resolved profiles of aerosol and clouds (e.g., cloud top height) with the benefits of MSI in observing the complete scene besides the satellite track and to extend the lidar information to the swath. The algorithm is validated against simulated test scenes.
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023, https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary
Short summary
We studied the stability of a blockwise phase correlation (PC) method to estimate cloud motion using a total sky imager (TSI). Shorter frame intervals and larger block sizes improve stability, while image resolution and color channels have minor effects. Raindrop contamination can be identified by the rotational motion of the TSI mirror. The correlations of cloud motion vectors (CMVs) from the PC method with wind data vary from 0.38 to 0.59. Optical flow vectors are more stable than PC vectors.
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech., 16, 1043–1059, https://doi.org/10.5194/amt-16-1043-2023, https://doi.org/10.5194/amt-16-1043-2023, 2023
Short summary
Short summary
Geostationary weather satellites have been used to detect storm clouds since their earliest applications. However, this task remains difficult as imaging satellites cannot observe the strong vertical winds that are characteristic of storm clouds. Here we introduce a new method that allows us to detect the early development of storms and continue to track them throughout their lifetime, allowing us to study how their early behaviour affects subsequent weather.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
EGUsphere, https://doi.org/10.5194/egusphere-2023-305, https://doi.org/10.5194/egusphere-2023-305, 2023
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combine the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size, and water path.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022, https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
Short summary
Vertical profiles of latent heating are derived from GOES-16 to be used in convective initialization. They are compared with other latent heating products derived from NEXRAD and GPM satellites, and the results show that their values are very similar to the radar-derived products. Finally, using latent heating derived from GOES-16 for convective initialization shows improvements in precipitation forecasts, which are comparable to the results using latent heating derived from NEXRAD.
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Wenyu Wang, Zhenzhan Wang, Qiurui He, and Lanjie Zhang
Atmos. Meas. Tech., 15, 6489–6506, https://doi.org/10.5194/amt-15-6489-2022, https://doi.org/10.5194/amt-15-6489-2022, 2022
Short summary
Short summary
This paper uses a neural network approach to retrieve the ice water path from FY-3B/MWHS polarimetric measurements, focusing on its unique 150 GHz quasi-polarized channels. The Level 2 product of CloudSat is used as the reference value for the neural network. The results show that the polarization information is helpful for the retrieval in scenes with thicker cloud ice, and the 150 GHz channels give a significant improvement compared to using only 183 GHz channels.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Short summary
In this study, a framework for processing the Doppler spectra observations of a multi-mode pulse compression Ka–Ku cloud radar system is presented. We first proposed an approach to identify and remove the clutter signals in the Doppler spectrum. Then, we developed a new algorithm to remove the range sidelobe at the modes implementing the pulse compression technique. The radar observations from different modes were then merged using the shift-then-average method.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, https://doi.org/10.5194/amt-15-5701-2022, 2022
Short summary
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Rachel T. Pinker, Yingtao Ma, Wen Chen, Istvan Laszlo, Hongqing Liu, Hye-Yun Kim, and Jaime Daniels
Atmos. Meas. Tech., 15, 5077–5094, https://doi.org/10.5194/amt-15-5077-2022, https://doi.org/10.5194/amt-15-5077-2022, 2022
Short summary
Short summary
Scene-dependent narrow-to-broadband transformations are developed to facilitate the use of observations from the Advanced Baseline Imager (ABI), the primary instrument on GOES-R, to derive surface shortwave radiative fluxes. This is a first NOAA product at the high resolution of about 5 k over the contiguous United States (CONUS) region. The product is archived and can be downloaded from the NOAA Comprehensive Large Array-data Stewardship System (CLASS).
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022, https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
Jean-Marie Lalande, Guillaume Bourmaud, Pierre Minvielle, and Jean-François Giovannelli
Atmos. Meas. Tech., 15, 4411–4429, https://doi.org/10.5194/amt-15-4411-2022, https://doi.org/10.5194/amt-15-4411-2022, 2022
Short summary
Short summary
In this paper we describe the implementation of an interpolation–prediction estimator applied to cloud properties derived from CloudSat observations. The objective is to evaluate the uncertainty associated with the estimated quantity. The model developed in this study can be valuable for satellite applications (GPS, telecommunication) as well as for cloud product comparisons. This paper is didactic and beneficial for anyone interested in kriging estimators.
Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling
Atmos. Meas. Tech., 15, 4257–4270, https://doi.org/10.5194/amt-15-4257-2022, https://doi.org/10.5194/amt-15-4257-2022, 2022
Short summary
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022, https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Short summary
We use the C-band POLDIRAD and the Ka-band MIRA-35 to perform snowfall dual-wavelength polarimetric radar measurements. We develop an ice microphysics retrieval for mass, apparent shape, and median size of the particle size distribution by comparing observations to T-matrix ice spheroid simulations while varying the mass–size relationship. We furthermore show how the polarimetric measurements from POLDIRAD help to narrow down ambiguities between ice particle shape and size.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Cited articles
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman,
S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements
for Collection 6, J. Appl. Meteorol. Clim., 51,
1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. a
CDO: Climate Data Operators, available at:
http://www.mpimet.mpg.de/cdo, last access: 1 July 2015. a
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and
Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud
classification and its comparison to airborne radar-lidar observations,
J. Geophys. Res.-Atmos., 118, 7962–7981,
https://doi.org/10.1002/jgrd.50579, 2013. a
Christensen, M. W., Stephens, G. L., and Lebsock, M. D.: Exposing biases in
retrieved low cloud properties from CloudSat: A guide for evaluating
observations and climate data, J. Geophys. Res.-Atmos.,
118, 12120–12131, https://doi.org/10.1002/2013JD020224, 2013. a
CM SAF: The Satellite Application Facility on Climate Monitoring,
available at: http://www.cmsaf.eu, last access: 13 October 2015. a
Comiso, J. C. and Hall, D. K.: Climate trends in the Arctic as observed from
space, Wires Clim. Change, 5, 389–409,
https://doi.org/10.1002/wcc.277, 2014. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Devasthale, A., Raspaud, M., and Schlundt, C.: PyGAC: an open-source,
community-driven Python interface to preprocess more than 30-year AVHRR
Global Area Coverage (GAC) data, in preparation, 2018. a
ESA CCI: The ESA Climate Change Initiative, available at:
http://cci.esa.int/, last access: 13 October 2015. a
Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L., Derrien, M.,
Francis, P. N., Heidinger, A., Joro, S., Kniffka, A., Le Gléau, H.,
Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis, P., Palikonda, R.,
Roebeling, R., Thoss, A., Platnick, S., Watts, P., and Wind, G.: Remote
sensing of cloud top pressure/height from SEVIRI: analysis of ten current
retrieval algorithms, Atmos. Meas. Tech., 7, 2839–2867,
https://doi.org/10.5194/amt-7-2839-2014, 2014. a
Han, Q., Rossow, W. B., and Lacis, A. A.: Near-Global Survey of Effective
Droplet Radii in Liquid Water Clouds Using ISCCP Data, J. Climate, 7,
465–497, https://doi.org/10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2, 1994. a
Heidinger, A. K. and Pavolonis, M. J.: Gazing at Cirrus Clouds for 25
Years through a Split Window. Part I: Methodology, J. Appl.
Meteorol. Clim., 48, 1100, https://doi.org/10.1175/2008JAMC1882.1, 2009. a
Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A
Naive
Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within
PATMOS-x, J. Appl. Meteorol. Clim., 51, 1129–1144,
https://doi.org/10.1175/JAMC-D-11-02.1, 2012. a
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The
Pathfinder Atmospheres–Extended AVHRR Climate Dataset, B.
Am. Meteorol. Soc., 95, 909–922,
https://doi.org/10.1175/BAMS-D-12-00246.1, 2013. a
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz,
M.,
Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg,
R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van
Roozendael, M., and Wagner, W.: The ESA Climate Change Initiative:
Satellite Data Records for Essential Climate Variables, B.
Am. Meteorol. Soc., 94, 1541–1552,
https://doi.org/10.1175/BAMS-D-11-00254.1, 2013. a
Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S., Kuehn,
R. E., Vaughan, M. A., and Baum, B.: Global Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP,
J. Geophys. Res.-Atmos., 113, D00A19,
https://doi.org/10.1029/2008JD009837, 2008. a, b, c, d, e
IPCC: Summary for Policymakers, book section SPM, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1–30,
https://doi.org/10.1017/CBO9781107415324.004,
2013. a
Jacobowitz, H., Stowe, L. L., Ohring, G., Heidinger, A., Knapp, K.,
and Nalli, N. R.: The Advanced Very High Resolution Radiometer Pathfinder
Atmosphere (PATMOS) Climate Dataset: A Resource for Climate Research,
B. Am. Meteorol. Soc., 84, 785–793,
https://doi.org/10.1175/BAMS-84-6-785, 2003. a
Kahn, B. H., Schreier, M. M., Yue, Q., Fetzer, E. J., Irion, F. W., Platnick,
S., Wang, C., Nasiri, S. L., and L'Ecuyer, T. S.: Pixel-scale assessment and
uncertainty analysis of AIRS and MODIS ice cloud optical thickness and
effective radius, J. Geophys. Res.-Atmos., 120,
11669–11689, https://doi.org/10.1002/2015JD023950, 2015. a
Karlsson, K.-G. and Dybbroe, A.: Evaluation of Arctic cloud products from the
EUMETSAT Climate Monitoring Satellite Application Facility based on
CALIPSO-CALIOP observations, Atmos. Chem. Phys., 10, 1789–1807,
https://doi.org/10.5194/acp-10-1789-2010, 2010. a, b
Karlsson, K.-G. and Johansson, E.: On the optimal method for evaluating cloud
products from passive satellite imagery using CALIPSO-CALIOP data: example
investigating the CM SAF CLARA-A1 dataset, Atmos. Meas. Tech., 6, 1271–1286,
https://doi.org/10.5194/amt-6-1271-2013, 2013. a, b
Karlsson, K.-G., Riihelä, A., Müller, R., Meirink, J. F., Sedlar, J.,
Stengel, M., Lockhoff, M., Trentmann, J., Kaspar, F., Hollmann, R., and
Wolters, E.: CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of
global AVHRR data, Atmos. Chem. Phys., 13, 5351–5367,
https://doi.org/10.5194/acp-13-5351-2013, 2013. a, b, c, d
Karlsson, K.-G., Sedlar, J., Devasthale, A., Stengel, M., Hanschmann, T.,
Meirink, J. F., Benas, N., and van Zadelhoff, G.-J.: Validation Report – CM
SAF Cloud, Albedo, Radiation data record, AVHRR-based, Edition 2 (CLARA-A2)
– Cloud Products, Tech. Rep. 2.3, EUMETSAT Satellite Application Facility
on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2016. a
Kiehl, J. and Trenberth, K. E.: Earth's annual global mean energy budget,
B. Am. Meteorol. Soc., 78, 197–208, 1997. a
King, M., Kaufman, Y., Menzel, W., and Tanre, D.: Remote sensing of cloud,
aerosol, and water vapor properties from the moderate resolution imaging
spectrometer (MODIS), IEEE T. Geosci. Remote,
30, 2–27, https://doi.org/10.1109/36.124212, 1992. a
Laszlo, I., Stamnes, K., Wiscombe, W. J., and Tsay, S.-C.: The Discrete
Ordinate Algorithm, DISORT for Radiative Transfer, Springer Berlin
Heidelberg, Berlin, Heidelberg, 3–65, https://doi.org/10.1007/978-3-662-49538-4_1, 2016. a, b
Liu, C., Allan, R. P., Mayer, M., Hyder, P., Loeb, N. G., Roberts, C. D.,
Valdivieso, M., Edwards, J. M., and Vidale, P.: Evaluation of satellite and
reanalysis-based global net surface energy flux and uncertainty estimates,
J. Geophys. Res.-Atmos., 122, 6250–6272,
https://doi.org/10.1002/2017JD026616, 2017. a, b
Lucht, W.: Expected retrieval accuracies of bidirectional reflectance and
albedo from EOS-MODIS and MISR angular sampling, J. Geophys.
Res.-Atmos., 103, 8763–8778, https://doi.org/10.1029/98JD00089, 1998. a
Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.: MODIS
Collection 6 shortwave-derived cloud phase classification algorithm and
comparisons with CALIOP, Atmos. Meas. Tech., 9, 1587–1599,
https://doi.org/10.5194/amt-9-1587-2016, 2016. a, b, c
McGarragh, G., Poulsen, C., Christensen, M., Sus, O., Povey, A., Proud, S.,
and
Grainger, R.: On the retrieval of cloud top pressure of semi-transparent
clouds: Methods and radiative consistency, J.
Atmos. Sci., in preparation, 2018a. a
McGarragh, G., Poulsen, C., Siddans, R., Povey, A., Proud, S., Thomas, G.,
and
Grainger, R.: Optimal Retrieval of Aerosol and Cloud (ORAC): the multilayer
cloud retrieval, Atmos. Meas. Tech. Discuss., in preparation,
2018b. a
McGarragh, G. R., Poulsen, C. A., Thomas, G. E., Povey, A. C., Sus, O.,
Stapelberg, S., Schlundt, C., Proud, S., Christensen, M. W., Stengel,
M., Hollmann, R., and Grainger, R. G.:
The Community Cloud retrieval for CLimate (CC4CL) – Part 2:
The optimal estimation approach, Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018, 2018c. a, b
Menzel, W. P., Frey, R. A., and Baum, B. A.: Cloud top properties and cloud
phase algorithm theoretical basis document, version 11, available at:
https://modis-images.gsfc.nasa.gov/_docs/MOD06-ATBD_2015_05_01.pdf
(last access: 11 June 2018), 2015. a
Merchant, C. J., Embury, O., Rayner, N. A., Berry, D. I., Corlett, G. K.,
Lean,
K., Veal, K. L., Kent, E. C., Llewellyn-Jones, D. T., Remedios, J. J., and
Saunders, R.: A 20 year independent record of sea surface temperature for
climate from Along-Track Scanning Radiometers, J. Geophys.
Res.-Oceans, 117, c12013, https://doi.org/10.1029/2012JC008400, 2012. a
Minnis, P., Sun-Mack, S., Young, D. F., Heck, P. W., Garber, D. P., Chen, Y.,
Spangenberg, D. A., Arduini, R. F., Trepte, Q. Z., Smith, W. L., Ayers,
J. K., Gibson, S. C., Miller, W. F., Hong, G., Chakrapani, V., Takano, Y.,
Liou, K. N., Xie, Y., and Yang, P.: CERES Edition-2 Cloud Property Retrievals
Using TRMM VIRS and Terra and Aqua MODIS Data – Part I: Algorithms, IEEE
T. Geosci. Remote, 49, 4374–4400,
https://doi.org/10.1109/TGRS.2011.2144601, 2011. a
MODIS Characterization Support Team: MODIS Level 1B Product User's Guide,
NASA Goddard Space Flight Center, 2009. a
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and
Effective Particle Radius of Clouds from Reflected Solar Radiation
Measurements. Part I: Theory, J. Atmos. Sci., 47,
1878–1893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990. a, b
NASA LP DAAC: MOD02 Level-1B Calibrated Geolocation Data Set. Version 6.
NASA
EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science
(EROS) Center, Sioux Falls, South Dakota,
https://doi.org/10.5067/MODIS/MOD021KM.006,
2015. a
Natural Environment Research Council, NERC CWVC GRAPE campaign
participants, and Grainger, D.: Global Cloud and Aerosol Dataset Produced
by the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE)
Project as part of the Clouds, Water Vapour and Climate (CWVC) Programme.
NCAS British Atmospheric Data Centre, available at:
http://catalogue.ceda.ac.uk/uuid/cf7ae349d16c067cd00d3d2d910bee89,
last access: 13 October 2015. a
Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O'Dell, C. W., and
Klein, S. A.: Evidence for climate change in the satellite cloud record,
Nature, 536, 72–75, https://doi.org/10.1038/nature18273, 2016. a
Platnick, S.: Vertical photon transport in cloud remote sensing problems,
J. Geophys. Res.-Atmos., 105, 22919–22935,
https://doi.org/10.1029/2000JD900333, 2000. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE T.
Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b, c
Poulsen, C. A., Siddans, R., Thomas, G. E., Sayer, A. M., Grainger, R. G.,
Campmany, E., Dean, S. M., Arnold, C., and Watts, P. D.: Cloud retrievals
from satellite data using optimal estimation: evaluation and application to
ATSR, Atmos. Meas. Tech., 5, 1889–1910,
https://doi.org/10.5194/amt-5-1889-2012, 2012. a, b, c
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and
practice, vol. 2, World Scientific, Singapore, 2009. a
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287,
1999. a
Sanchez-Lorenzo, A., Enriquez-Alonso, A., Calbó, J., González, J.-A.,
Wild, M., Folini, D., Norris, J. R., and Vicente-Serrano, S. M.: Fewer clouds
in the Mediterranean: consistency of observations and climate simulations,
Sci. Rep.-UK, 7, 41475, https://doi.org/10.1038/srep41475, 2017. a
Sayer, A. M., Thomas, G. E., and Grainger, R. G.: A sea surface reflectance
model for (A)ATSR, and application to aerosol retrievals, Atmos. Meas. Tech.,
3, 813–838, https://doi.org/10.5194/amt-3-813-2010, 2010. a
Schaaf, C. and Wang, Z.: MCD43C1 MODIS/Terra+Aqua BRDF/AlbedoModel Parameters
Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MCD43C1.006, 2015. a
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S.,
Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S.,
Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A.,
Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters,
E., and Zelenka, A.: Operational climate monitoring from space: the EUMETSAT
Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem.
Phys., 9, 1687–1709, https://doi.org/10.5194/acp-9-1687-2009, 2009. a
Seemann, S. W., Borbas, E. E., Knuteson, R. O., Stephenson, G. R., and Huang,
H.-L.: Development of a Global Infrared Land Surface Emissivity Database for
Application to Clear Sky Sounding Retrievals from Multispectral Satellite
Radiance Measurements, J. Appl. Meteorol. Clim., 47,
108–123, https://doi.org/10.1175/2007JAMC1590.1, 2008. a
Stengel, M., Mieruch, S., Jerg, M., Karlsson, K.-G., Scheirer, R., Maddux,
B.,
Meirink, J., Poulsen, C., Siddans, R., Walther, A., and Hollmann, R.: The
Clouds Climate Change Initiative: Assessment of state-of-the-art cloud
property retrieval schemes applied to AVHRR heritage measurements, Remote
Sens. Environ., 162, 363–379, https://doi.org/10.1016/j.rse.2013.10.035, 2015. a, b, c, d
Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G.,
Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale,
A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A. C.,
Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski, J.
S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS,
AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci.
Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, 2017. a, b, c, d, e, f
Stengel, M., Stapelberg, S., Schlundt, C., Karlsson, K.-G., Meirink, J. F.,
Poulsen, C., Bojanowski, J., Stöckli, R., and Hollmann, R.: ESA Cloud CCI –
Product Validation and Intercomparison Report, Tech. Rep. 5.1, ESA Climate
Change Initiative – Cloud CCI, 2018. a
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'ecuyer, T., Stackhouse Jr., P. W., Lebsock, M., and Andrews, T.: An update
on Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696,
https://doi.org/10.1038/ngeo1580, 2012. a
Sun, B., Free, M., Yoo, H. L., Foster, M. J., Heidinger, A., and Karlsson,
K.-G.: Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and
CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations, J.
Climate, 28, 4373–4389, https://doi.org/10.1175/JCLI-D-14-00805.1, 2015. a, b
Thomas, G. E., Carboni, E., Sayer, A. M., Poulsen, C. A., Siddans, R., and
Grainger, R. G.: Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals
from satellite radiometers, in: Satellite Aerosol Remote Sensing over
Land, edited by: Kokhanovsky, A. and de Leeuw, G., Springer Praxis Books,
Springer, Berlin, Heidelberg, 193–225,
https://doi.org/10.1007/978-3-540-69397-0_7, 2009a. a
Thomas, G. E., Poulsen, C. A., Sayer, A. M., Marsh, S. H., Dean, S. M.,
Carboni, E., Siddans, R., Grainger, R. G., and Lawrence, B. N.: The GRAPE
aerosol retrieval algorithm, Atmos. Meas. Tech., 2, 679–701,
https://doi.org/10.5194/amt-2-679-2009, 2009b. a
Trishchenko, A. P., Cihlar, J., and Li, Z.: Effects of spectral response
function on surface reflectance and NDVI measured with moderate resolution
satellite sensors, Remote Sens. Environ., 81, 1–18,
https://doi.org/10.1016/S0034-4257(01)00328-5, 2002. a
Walther, A. and Heidinger, A. K.: Implementation of the Daytime Cloud Optical
and Microphysical Properties Algorithm (DCOMP) in PATMOS-x, J.
Appl. Meteorol. Clim., 51, 1371–1390,
https://doi.org/10.1175/JAMC-D-11-0108.1, 2012. a
Wang, C., Yang, P., Baum, B. A., Platnick, S., Heidinger, A. K., Hu, Y., and
Holz, R. E.: Retrieval of Ice Cloud Optical Thickness and Effective Particle
Size Using a Fast Infrared Radiative Transfer Model, J. Appl.
Meteorol. Clim., 50, 2283–2297, https://doi.org/10.1175/JAMC-D-11-067.1,
2011. a
Watts, P. D., Bennartz, R., and Fell, F.: Retrieval of two-layer cloud
properties from multispectral observations using optimal estimation, J.
Geophys. Res.-Atmos., 116, D16203,
https://doi.org/10.1029/2011JD015883,
2011. a, b
Willett, K., Alexander, L., and Thorne, P.: Global climate, in: State of the
Climate in 2009, edited by: Arndt, D. S., Baringer, M. O., and Johnson, M. R.,
vol. 91, 19–52, https://doi.org/10.1175/BAMS-91-7-StateoftheClimate, 2010. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP data
processing algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a, b
Xiong, X., Wenny, B. N., and Barnes, W. L.: Overview of NASA Earth Observing
Systems Terra and Aqua moderate resolution imaging spectroradiometer
instrument calibration algorithms and on-orbit performance, J.
Appl. Remote Sens., 3, 032501, https://doi.org/10.1117/1.3180864,
2009. a
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J.,
and Dickinson, R.: The role of satellite remote sensing in climate change
studies, Nat. Clim. Change, 3, 875–883, 2013. a
Yang, Q., Losch, M., Losa, S. N., Jung, T., Nerger, L., and Lavergne, T.:
Brief communication: The challenge and benefit of using sea ice concentration
satellite data products with uncertainty estimates in summer sea ice data
assimilation, The Cryosphere, 10, 761–774,
https://doi.org/10.5194/tc-10-761-2016, 2016. a, b
Short summary
This paper presents a new cloud detection and classification framework, CC4CL. It applies a sophisticated optimal estimation method to derive cloud variables from satellite data of various polar-orbiting platforms and sensors (AVHRR, MODIS, AATSR). CC4CL provides explicit uncertainty quantification and long-term consistency for decadal timeseries at various spatial resolutions. We analysed 5 case studies to show that cloud height estimates are very realistic unless optically thin clouds overlap.
This paper presents a new cloud detection and classification framework, CC4CL. It applies a...