Articles | Volume 11, issue 8
Atmos. Meas. Tech., 11, 4627–4643, 2018
Atmos. Meas. Tech., 11, 4627–4643, 2018
Research article
09 Aug 2018
Research article | 09 Aug 2018

A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems

Simon Pfreundschuh et al.

Related authors

An improved near real-time precipitation retrieval for Brazil
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel Alejandro Vila, and Alan James P. Calheiros
EGUsphere,,, 2022
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
GPROF-NN: A neural network based implementation of the Goddard Profiling Algorithm
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech. Discuss.,,, 2022
Preprint under review for AMT
Short summary
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699,,, 2022
Short summary
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979,,, 2021
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245,,, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035,,, 2022
Short summary
Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754,,, 2022
Short summary
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354,,, 2022
Short summary
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944,,, 2022
Short summary
Applying self-supervised learning for semantic cloud segmentation of all-sky images
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809,,, 2022
Short summary

Cited articles

Aires, F., Prigent, C., and Rossow, W. B.: Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 2. Output errors, J. Geophys. Res., 109, d10304,, 2004. a
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer-Verlag New York, 2006. a
Brath, M., Fox, S., Eriksson, P., Harlow, R. C., Burgdorf, M., and Buehler, S. A.: Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures, Atmos. Meas. Tech., 11, 611–632,, 2018. a
Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition, Geosci. Model Dev., 11, 1537–1556,, 2018. a
Cannon, A. J.: Quantile regression neural networks: Implementation in R and application to precipitation downscaling, Comput. Geosci., 37, 1277–1284,, 2011. a
Short summary
A novel neural-network-based retrieval method is proposed that combines the flexibility and computational efficiency of machine learning retrievals with the consistent treatment of uncertainties of Bayesian methods. Numerical experiments are presented that show the consistency of the proposed method with the Bayesian formulation as well as its ability to represent non-Gaussian retrieval errors. With this, the proposed method overcomes important limitations of traditional methods.