Articles | Volume 12, issue 5
https://doi.org/10.5194/amt-12-2881-2019
https://doi.org/10.5194/amt-12-2881-2019
Research article
 | 
27 May 2019
Research article |  | 27 May 2019

Polarimetric radar characteristics of lightning initiation and propagating channels

Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi

Related authors

Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021,https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Analysis of the lightning production of convective cells
Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi
Atmos. Meas. Tech., 12, 5573–5591, https://doi.org/10.5194/amt-12-5573-2019,https://doi.org/10.5194/amt-12-5573-2019, 2019
Short summary
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016,https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
TanSat-2: a new satellite for mapping solar-induced chlorophyll fluorescence at both red and far-red bands with high spatiotemporal resolution
Dianrun Zhao, Shanshan Du, Chu Zou, Longfei Tian, Meng Fan, Yulu Du, and Liangyun Liu
Atmos. Meas. Tech., 18, 3647–3667, https://doi.org/10.5194/amt-18-3647-2025,https://doi.org/10.5194/amt-18-3647-2025, 2025
Short summary
Propagating information content: an example with advection
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025,https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Best estimate of the planetary boundary layer height from multiple remote sensing measurements
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025,https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025,https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025,https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary

Cited articles

Azadifar, M.: Characteristics of Upward Lightning Flashes, PhD thesis, Swiss Federal Institute of Technology, 2017. a
Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Diendorfer, G., Pichler, H., Schulz, W., Pavanello, D., and Romero, C.: Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower, J. Geophys. Res.-Atmos., 121, 595–606, https://doi.org/10.1002/2015JD024259, 2015. a, b, c
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling hydrometeor mixtures in polarimetric radar measurements, Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, 2018. a, b
Brooks, I. M. and Saunders, C.: An experimental investigation of the inductive mechanism of thunderstorm electrification, J. Geophys. Res.-Atmos., 99, 10627–10632, https://doi.org/10.1029/93JD01574, 1994. a
Download
Short summary
This paper presents an analysis of a large dataset of lightning and polarimetric weather radar data collected over the course of a lightning measurement campaign that took place in the summer of 2017 in the area surrounding Säntis in northeastern Switzerland. We show that polarimetric weather radar data can be helpful in determining regions where lightning is more likely to occur, which is a first step towards a lightning nowcasting system.
Share