Articles | Volume 12, issue 5
Atmos. Meas. Tech., 12, 2881–2911, 2019
https://doi.org/10.5194/amt-12-2881-2019
Atmos. Meas. Tech., 12, 2881–2911, 2019
https://doi.org/10.5194/amt-12-2881-2019

Research article 27 May 2019

Research article | 27 May 2019

Polarimetric radar characteristics of lightning initiation and propagating channels

Jordi Figueras i Ventura et al.

Related authors

Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021,https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Analysis of the lightning production of convective cells
Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi
Atmos. Meas. Tech., 12, 5573–5591, https://doi.org/10.5194/amt-12-5573-2019,https://doi.org/10.5194/amt-12-5573-2019, 2019
Short summary
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016,https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022,https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations
Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao
Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022,https://doi.org/10.5194/amt-15-735-2022, 2022
Short summary
Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022,https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Improving thermodynamic profile retrievals from microwave radiometers by including radio acoustic sounding system (RASS) observations
Irina V. Djalalova, David D. Turner, Laura Bianco, James M. Wilczak, James Duncan, Bianca Adler, and Daniel Gottas
Atmos. Meas. Tech., 15, 521–537, https://doi.org/10.5194/amt-15-521-2022,https://doi.org/10.5194/amt-15-521-2022, 2022
Short summary
Calibration of radar differential reflectivity using quasi-vertical profiles
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 15, 503–520, https://doi.org/10.5194/amt-15-503-2022,https://doi.org/10.5194/amt-15-503-2022, 2022
Short summary

Cited articles

Azadifar, M.: Characteristics of Upward Lightning Flashes, PhD thesis, Swiss Federal Institute of Technology, 2017. a
Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Diendorfer, G., Pichler, H., Schulz, W., Pavanello, D., and Romero, C.: Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower, J. Geophys. Res.-Atmos., 121, 595–606, https://doi.org/10.1002/2015JD024259, 2015. a, b, c
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling hydrometeor mixtures in polarimetric radar measurements, Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, 2018. a, b
Brooks, I. M. and Saunders, C.: An experimental investigation of the inductive mechanism of thunderstorm electrification, J. Geophys. Res.-Atmos., 99, 10627–10632, https://doi.org/10.1029/93JD01574, 1994. a
Download
Short summary
This paper presents an analysis of a large dataset of lightning and polarimetric weather radar data collected over the course of a lightning measurement campaign that took place in the summer of 2017 in the area surrounding Säntis in northeastern Switzerland. We show that polarimetric weather radar data can be helpful in determining regions where lightning is more likely to occur, which is a first step towards a lightning nowcasting system.