Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 7
Atmos. Meas. Tech., 12, 3699–3716, 2019
https://doi.org/10.5194/amt-12-3699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 3699–3716, 2019
https://doi.org/10.5194/amt-12-3699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jul 2019

Research article | 09 Jul 2019

Calibration of a water vapour Raman lidar using GRUAN-certified radiosondes and a new trajectory method

Shannon Hicks-Jalali et al.

Related authors

A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020,https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
A practical information-centered technique to remove a priori information from lidar optimal-estimation-method retrievals
Ali Jalali, Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 3943–3961, https://doi.org/10.5194/amt-12-3943-2019,https://doi.org/10.5194/amt-12-3943-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of daytime mesospheric ozone using OSIRIS observations of O2 (a1Δg) emission
Anqi Li, Chris Z. Roth, Kristell Pérot, Ole Martin Christensen, Adam Bourassa, Doug A. Degenstein, and Donal P. Murtagh
Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020,https://doi.org/10.5194/amt-13-6215-2020, 2020
Short summary
Version 2 Ozone Monitoring Instrument SO2 product (OMSO2 V2): new anthropogenic SO2 vertical column density dataset
Can Li, Nickolay A. Krotkov, Peter J. T. Leonard, Simon Carn, Joanna Joiner, Robert J. D. Spurr, and Alexander Vasilkov
Atmos. Meas. Tech., 13, 6175–6191, https://doi.org/10.5194/amt-13-6175-2020,https://doi.org/10.5194/amt-13-6175-2020, 2020
Short summary
The quantification of NOx and SO2 point source emission flux errors of mobile differential optical absorption spectroscopy on the basis of the Gaussian dispersion model: a simulation study
Yeyuan Huang, Ang Li, Thomas Wagner, Yang Wang, Zhaokun Hu, Pinhua Xie, Jin Xu, Hongmei Ren, Julia Remmers, Xiaoyi Fang, and Bing Dang
Atmos. Meas. Tech., 13, 6025–6051, https://doi.org/10.5194/amt-13-6025-2020,https://doi.org/10.5194/amt-13-6025-2020, 2020
Short summary
Probabilistic retrieval of volcanic SO2 layer height and partial column density using the Cross-track Infrared Sounder (CrIS)
David M. Hyman and Michael J. Pavolonis
Atmos. Meas. Tech., 13, 5891–5921, https://doi.org/10.5194/amt-13-5891-2020,https://doi.org/10.5194/amt-13-5891-2020, 2020
Short summary
Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals
Juseon Bak, Xiong Liu, Manfred Birk, Georg Wagner, Iouli E. Gordon, and Kelly Chance
Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020,https://doi.org/10.5194/amt-13-5845-2020, 2020
Short summary

Cited articles

Adam, M., Demoz, B. B., Whiteman, D. N., Venable, D. D., Joseph, E., Gambacorta, A., Wei, J., Shephard, M. W., Miloshevich, L. M., Barnet, C. D., Herman, R. L., Fitzgibbon, J., and Connell, R.: Water vapor measurements by Howard university Raman lidar during the WAVES 2006 campaign, J. Atmos. Ocean. Tech., 27, 42–60, https://doi.org/10.1175/2009JTECHA1331.1, 2010. a, b, c
Avila, G., Fernández, J., Tejeda, G., and Montero, S.: The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions, J. Mol. Spectrosc., 228, 38–65, https://doi.org/10.1016/j.jms.2004.06.012, 2004. a
Bevington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 3rd edn., McGraw-Hill Companies, Inc., New York, https://doi.org/10.1063/1.4823194, 2003. a, b
Brocard, E., Philipona, R., Haefele, A., Romanens, G., Mueller, A., Ruffieux, D., Simeonov, V., and Calpini, B.: Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements, Atmos. Meas. Tech., 6, 1347–1358, https://doi.org/10.5194/amt-6-1347-2013, 2013. a, b
Daidzic, N.: Long and short-range air navigation on spherical Earth, Int. J. Aviat. Aeron. Aerosp., 4, 1–54, https://doi.org/10.15394/ijaaa.2017.1160, 2017. a
Publications Copernicus
Download
Short summary
Water vapour trend calculations with lidars require rigorous calibrations. Here, we improve water vapour lidar calibrations using GCOS Reference Upper Air Network (GRUAN) radiosondes and a new trajectory method. The trajectory method improved the lidar calibration and more consistently agreed with the radiosonde measurement compared to the traditional method. Using GRUAN radiosondes enabled the calculation, for the first time, of a complete uncertainty budget of the calibration constant.
Water vapour trend calculations with lidars require rigorous calibrations. Here, we improve...
Citation