Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-5071-2019
https://doi.org/10.5194/amt-12-5071-2019
Research article
 | 
23 Sep 2019
Research article |  | 23 Sep 2019

Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties

Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden

Related authors

A Novel Model Hierarchy Isolates the Effect of Temperature-dependent Cloud Optics on Infrared Radiation
Ash Gilbert, Jennifer E. Kay, and Penny Rowe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2043,https://doi.org/10.5194/egusphere-2024-2043, 2024
Short summary
Extending the CW3E Atmospheric River Scale to the Polar Regions
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
EGUsphere, https://doi.org/10.5194/egusphere-2024-254,https://doi.org/10.5194/egusphere-2024-254, 2024
Short summary
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-266,https://doi.org/10.5194/amt-2020-266, 2020
Preprint withdrawn
Short summary
Pan-Arctic measurements of wintertime water vapour column using a satellite-borne microwave radiometer
Christopher Perro, Thomas J. Duck, Glen Lesins, Kimberly Strong, Penny M. Rowe, James R. Drummond, and Robert J. Sica
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-381,https://doi.org/10.5194/amt-2018-381, 2019
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary

Cited articles

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B. and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 
Clough, S., Iacono, M. J., and Moncet, J. L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapour, J. Geophys. Res.-Atmos., 97, 15761–15785, 1992. 
Clough, S., Shephard, M. W., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. 
Cox, C., Turner, D. D., Rowe, P. M., Shupe, M., and Walden, V. P.: Cloud Microphysical Properties Retrieved from Downwelling Infrared Radiance Measurements Made at Eureka, Nunavut, Canada (2006–09), J. Appl. Meteorol. Climatol., 53, 772–791, https://doi.org/10.1175/JAMC-D-13-0113.1, 2014 
Download
Short summary
A better understanding of polar clouds is needed for predicting climate change, including cloud thickness and the sizes and amounts of liquid droplets and ice crystals. These properties can be estimated from an instrument (an infrared spectrometer) that sits on the surface and measures how much infrared radiation is emitted by the cloud. In this work we use model data to investigate how well such an instrument could retrieve cloud properties for different instrument and error characteristics.