Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-5071-2019
https://doi.org/10.5194/amt-12-5071-2019
Research article
 | 
23 Sep 2019
Research article |  | 23 Sep 2019

Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties

Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden

Related authors

Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
The Cryosphere, 18, 5239–5258, https://doi.org/10.5194/tc-18-5239-2024,https://doi.org/10.5194/tc-18-5239-2024, 2024
Short summary
A Novel Model Hierarchy Isolates the Effect of Temperature-dependent Cloud Optics on Infrared Radiation
Ash Gilbert, Jennifer E. Kay, and Penny Rowe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2043,https://doi.org/10.5194/egusphere-2024-2043, 2024
Short summary
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-266,https://doi.org/10.5194/amt-2020-266, 2020
Preprint withdrawn
Short summary
Pan-Arctic measurements of wintertime water vapour column using a satellite-borne microwave radiometer
Christopher Perro, Thomas J. Duck, Glen Lesins, Kimberly Strong, Penny M. Rowe, James R. Drummond, and Robert J. Sica
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-381,https://doi.org/10.5194/amt-2018-381, 2019
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary

Cited articles

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B. and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 
Clough, S., Iacono, M. J., and Moncet, J. L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapour, J. Geophys. Res.-Atmos., 97, 15761–15785, 1992. 
Clough, S., Shephard, M. W., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. 
Cox, C., Turner, D. D., Rowe, P. M., Shupe, M., and Walden, V. P.: Cloud Microphysical Properties Retrieved from Downwelling Infrared Radiance Measurements Made at Eureka, Nunavut, Canada (2006–09), J. Appl. Meteorol. Climatol., 53, 772–791, https://doi.org/10.1175/JAMC-D-13-0113.1, 2014 
Download
Short summary
A better understanding of polar clouds is needed for predicting climate change, including cloud thickness and the sizes and amounts of liquid droplets and ice crystals. These properties can be estimated from an instrument (an infrared spectrometer) that sits on the surface and measures how much infrared radiation is emitted by the cloud. In this work we use model data to investigate how well such an instrument could retrieve cloud properties for different instrument and error characteristics.