Articles | Volume 12, issue 12
Atmos. Meas. Tech., 12, 6341–6359, 2019
https://doi.org/10.5194/amt-12-6341-2019
Atmos. Meas. Tech., 12, 6341–6359, 2019
https://doi.org/10.5194/amt-12-6341-2019

Research article 03 Dec 2019

Research article | 03 Dec 2019

An experimental 2D-Var retrieval using AMSR2

David Ian Duncan et al.

Related authors

Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021,https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
On the distinctiveness of observed oceanic raindrop distributions
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019,https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary
An update on global atmospheric ice estimates from satellite observations and reanalyses
David Ian Duncan and Patrick Eriksson
Atmos. Chem. Phys., 18, 11205–11219, https://doi.org/10.5194/acp-18-11205-2018,https://doi.org/10.5194/acp-18-11205-2018, 2018
Short summary
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627–4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Ground-based temperature and humidity profiling: combining active and passive remote sensors
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021,https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013, https://doi.org/10.5194/amt-14-3003-2021,https://doi.org/10.5194/amt-14-3003-2021, 2021
Short summary
Detection of the melting level with polarimetric weather radar
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 14, 2873–2890, https://doi.org/10.5194/amt-14-2873-2021,https://doi.org/10.5194/amt-14-2873-2021, 2021
Short summary
Integrated water vapor and liquid water path retrieval using a single-channel radiometer
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-14-2749-2021,https://doi.org/10.5194/amt-14-2749-2021, 2021
Short summary
Improving atmospheric path attenuation estimates for radio propagation applications by microwave radiometric profiling
Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano
Atmos. Meas. Tech., 14, 2737–2748, https://doi.org/10.5194/amt-14-2737-2021,https://doi.org/10.5194/amt-14-2737-2021, 2021
Short summary

Cited articles

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications, B. Am. Meteor. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011. a
Backus, G. E. and Gilbert, J. F.: Numerical Applications of a Formalism for Geophysical Inverse Prob., Geophys. J. R. Astron. Soc., 13, 247–276, https://doi.org/10.1111/j.1365-246X.1967.tb02159.x, 1967. a, b
Baron, P., Ricaud, P., Delanoë, J., Eriksson, P., Merino, F., and Murtagh, D.: Studies for the Odin sub-millimetre radiometer. II. Retrieval methodology, Can. J. Phys., 80, 341–356, https://doi.org/10.1139/p01-150, 2002. a
Berg, W.: GPM GMI Common Calibrated Brightness Temperatures Collocated L1C 1.5 hours 13 km V05, Tech. rep., NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/GPM/GMI/GPM/1C/05, 2016. a
Berg, W., Bilanow, S., Chen, R., Datta, S., Draper, D., Ebrahimi, H., Farrar, S., Jones, W. L., Kroodsma, R., McKague, D., Payne, V., Wang, J., Wilheit, T., and Yang, J. X.: Intercalibration of the GPM Microwave Radiometer Constellation, J. Atmos. Oceanic Tech., 33, 2639–2654, https://doi.org/10.1175/JTECH-D-16-0100.1, 2016. a
Download
Short summary
The overlapping beams of some satellite observations contain spatial information that is discarded by most data processing techniques. This study applies an established technique in a new way to improve the spatial resolution of retrieval targets, effectively using the overlapping information to achieve a higher ultimate resolution. It is argued that this is a more optimal use of the total information available from current microwave sensors, using AMSR2 as an example.