Articles | Volume 12, issue 12
Atmos. Meas. Tech., 12, 6401–6423, 2019

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Atmos. Meas. Tech., 12, 6401–6423, 2019

Research article 05 Dec 2019

Research article | 05 Dec 2019

Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign

Norman Wildmann et al.

Related authors

The COTUR project: Remote sensing of offshore turbulence for wind energy application
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid Husøy Onarheim, and Marte Godvik
Atmos. Meas. Tech. Discuss.,,, 2021
Preprint under review for AMT
Short summary
Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michal Galkowski, Justyna Swolkien, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys. Discuss.,,, 2021
Preprint under review for ACP
Short summary
Distributed wind measurements with multiple quadrotor UAVs in the atmospheric boundary layer
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech. Discuss.,,, 2021
Revised manuscript accepted for AMT
Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys. Discuss.,,, 2020
Revised manuscript accepted for ACP
Short summary
Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695,,, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assimilation of DAWN Doppler wind lidar data during the 2017 Convective Processes Experiment (CPEX): impact on precipitation and flow structure
Svetla Hristova-Veleva, Sara Q. Zhang, F. Joseph Turk, Ziad S. Haddad, and Randy C. Sawaya
Atmos. Meas. Tech., 14, 3333–3350,,, 2021
Short summary
Consistency of total column ozone measurements between the Brewer and Dobson spectroradiometers of the LKO Arosa and PMOD/WRC Davos
Julian Gröbner, Herbert Schill, Luca Egli, and René Stübi
Atmos. Meas. Tech., 14, 3319–3331,,, 2021
Short summary
RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193,,, 2021
Short summary
Ground-based temperature and humidity profiling: combining active and passive remote sensors
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048,,, 2021
Short summary
Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013,,, 2021
Short summary

Cited articles

Adler, B. and Kalthoff, N.: Multi-scale Transport Processes Observed in the Boundary Layer over a Mountainous Island, Bound.-Lay. Meteorol., 153, 515–537, 2014. a
Balsley, B. B., Frehlich, R. G., Jensen, M. L., Meillier, Y., and Muschinski, A.: Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes, J. Atmos. Sci., 60, 2496–2508, 2003. a
Barlow, R. J.: Statistics: a guide to the use of statistical methods in the physical sciences, vol. 29, John Wiley & Sons, 1989. a
Belcher, S. E., Harman, I. N., and Finnigan, J. J.: The Wind in the Willows: Flows in Forest Canopies in Complex Terrain, Annu. Rev. Fluid Mech., 44, 479–504,, 2012. a
Bell, T., Klein, P., Wildmann, N., and Menke, R.: Analysis of Flow in Complex Terrain Using Multi-Doppler Lidar Retrievals, Atmos. Meas. Tech. Discuss.,, in review, 2019. a
Short summary
Turbulence is the variation of wind velocity on short timescales. In this study we introduce a new method to measure turbulence in a two-dimensionial plane with lidar instruments. The method allows for the detection and quantification of subareas of distinct turbulence conditions in the observed plane. We compare the results to point and profile measurements with more established instruments. It is shown that turbulence below low-level jets and in wind turbine wakes can be investigated this way.