Articles | Volume 12, issue 12
https://doi.org/10.5194/amt-12-6401-2019
https://doi.org/10.5194/amt-12-6401-2019
Research article
 | 
05 Dec 2019
Research article |  | 05 Dec 2019

Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign

Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner

Related authors

Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023,https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
Tamino Wetz and Norman Wildmann
Wind Energ. Sci., 8, 515–534, https://doi.org/10.5194/wes-8-515-2023,https://doi.org/10.5194/wes-8-515-2023, 2023
Short summary
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022,https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022,https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022,https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023,https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Broadband radiative quantities for the EarthCARE mission: the ACM-COM and ACM-RT products
Jason N. S. Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech., 16, 4271–4288, https://doi.org/10.5194/amt-16-4271-2023,https://doi.org/10.5194/amt-16-4271-2023, 2023
Short summary
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023,https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023,https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023,https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary

Cited articles

Adler, B. and Kalthoff, N.: Multi-scale Transport Processes Observed in the Boundary Layer over a Mountainous Island, Bound.-Lay. Meteorol., 153, 515–537, 2014. a
Balsley, B. B., Frehlich, R. G., Jensen, M. L., Meillier, Y., and Muschinski, A.: Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes, J. Atmos. Sci., 60, 2496–2508, 2003. a
Barlow, R. J.: Statistics: a guide to the use of statistical methods in the physical sciences, vol. 29, John Wiley & Sons, 1989. a
Belcher, S. E., Harman, I. N., and Finnigan, J. J.: The Wind in the Willows: Flows in Forest Canopies in Complex Terrain, Annu. Rev. Fluid Mech., 44, 479–504, https://doi.org/10.1146/annurev-fluid-120710-101036, 2012. a
Bell, T., Klein, P., Wildmann, N., and Menke, R.: Analysis of Flow in Complex Terrain Using Multi-Doppler Lidar Retrievals, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-417, in review, 2019. a
Download
Short summary
Turbulence is the variation of wind velocity on short timescales. In this study we introduce a new method to measure turbulence in a two-dimensionial plane with lidar instruments. The method allows for the detection and quantification of subareas of distinct turbulence conditions in the observed plane. We compare the results to point and profile measurements with more established instruments. It is shown that turbulence below low-level jets and in wind turbine wakes can be investigated this way.