Articles | Volume 13, issue 9
https://doi.org/10.5194/amt-13-4947-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-4947-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 90095, USA
Matthew D. Lebsock
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
James McDuffie
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Graeme L. Stephens
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 90095, USA
Department of Meteorology, University of Reading, Reading, RG6 7BE, UK
Related authors
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Huanxin Zhang, Jun Wang, Nathan Janechek, Cui Ge, Meng Zhou, Lorena Castro García, Tong Sha, Yanyu Wang, Weizhi Deng, Zhixin Xue, Chengzhe Li, Lakhima Chutia, Yi Wang, Sebastian Val, James L. McDuffie, Sina Hasheminassab, Scott E. Gluck, David J. Diner, Peter R. Colarco, and Arlindo M. da Silva
EGUsphere, https://doi.org/10.5194/egusphere-2025-1360, https://doi.org/10.5194/egusphere-2025-1360, 2025
Short summary
Short summary
We present here the development of the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-WRF-Chem) framework to support the Multi-Angle Imager for Aerosols (MAIA) satellite mission. Some of the major updates include improving dust size distribution in the chemical boundary conditions, updating land surface properties using timely satellite data and improvement of soil NOx emissions. We demonstrate subsequent model improvement over several of the MAIA target areas.
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322, https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
Short summary
This study explores the potential of a hypothetical spaceborne radar to observe water vapor within clouds.
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618, https://doi.org/10.5194/egusphere-2025-618, 2025
Short summary
Short summary
Current knowledge of the link between clouds and climate is limited by lack of observations of the drop size distribution (DSD) within clouds, especially for the smallest drops. We demonstrate a method of retrieving DSDs down to small drop sizes using observations of drizzling marine layer clouds captured by the CloudCube millimeter-wave Doppler radar. We compare the shape of the observed spectra to theoretical expectations of radar echoes to solve for DSDs at each time and elevation.
Marcin J. Kurowski, Matthew D. Lebsock, and Kevin M. Smalley
EGUsphere, https://doi.org/10.5194/egusphere-2025-714, https://doi.org/10.5194/egusphere-2025-714, 2025
Short summary
Short summary
This study explores how clouds respond to pollution throughout the day using high-resolution simulations. Polluted clouds show stronger daily changes: thicker clouds at night and in the morning but faster thinning in the afternoon. Pollution reduces rainfall but enhances drying, deepening the cloud layer. While the pollution initially brightens clouds, the daily cycle of cloudiness slightly reduces this brightening effect.
Otto Lamminpää, Jouni Susiluoto, Jonathan Hobbs, James McDuffie, Amy Braverman, and Houman Owhadi
Atmos. Meas. Tech., 18, 673–694, https://doi.org/10.5194/amt-18-673-2025, https://doi.org/10.5194/amt-18-673-2025, 2025
Short summary
Short summary
We develop and demonstrate a fast forward function emulator for remote sensing of greenhouse gases. These forward functions are computationally expensive to evaluate, and as such the key challenge for many satellite missions in their data processing is the time used in these evaluations. Our method is fast and accurate enough, less than 1 % relative error, so that it could be safely used in operational processing.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023, https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech., 13, 5193–5205, https://doi.org/10.5194/amt-13-5193-2020, https://doi.org/10.5194/amt-13-5193-2020, 2020
Short summary
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.
Cited articles
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A.,
Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6,
J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012.
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number
concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007.
Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field,
P. R., and Elsaesser, G. S.: Strong Dependence of Atmospheric Feedbacks on Mixed-Phase
Microphysics and Aerosol-Cloud Interactions in HadGEM3, J. Adv. Model. Earth Sy., 11,
1735–1758, https://doi.org/10.1029/2019MS001688, 2019.
Boesch, H., Brown, L., Castano, R., Christi, M., Connor, B., Crisp, D., Eldering, A.,
Fisher, B., Frankenberg, C., Gunson, M., Granat, R., McDuffie, J., Miller, C., Natraj, V.,
O'Brien, D., O'Dell, C., Osterman, G., Oyafuso, F., Payne, V., Polonsky, I., Smyth, M., Spurr, R.,
Thompson, D., and Toon, G.: Orbiting Carbon Observatory (OCO)-2 Level 2 Full Physics Algorithm
Theoretical Basis Document, Pasadena, CA, available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V8.pdf (last access: 7 September 2020), 2017.
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical
cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806,
https://doi.org/10.1029/2005GL023851, 2005.
CloudSat Data Processing Center: http://www.cloudsat.cira.colostate.edu/data-products/level-aux/oco2cld-lidar-aux, last access: 9 September 2020.
Crisp, D.: NASA Orbiting Carbon Observatory: measuring the column averaged carbon
dioxide mole fraction from space, J. Appl. Remote Sens., 2, 023508, https://doi.org/10.1117/1.2898457, 2008.
Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor,
B. J., Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O'Brien, D., Pawson, S., Randerson,
J. T., Rayner, P., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon,
G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss,
B., Pollock, R., Kenyon, D., and Schroll, S.: The Orbiting Carbon Observatory (OCO) mission,
Adv. Space Res., 34, 700–709, https://doi.org/10.1016/j.asr.2003.08.062, 2004.
Davis, A. B. and Knyazikhin, Y.: A Primer in 3D Radiative Transfer, in: 3D Radiative
Transfer in Cloudy Atmospheres, Springer-Verlag, Berlin/Heidelberg, 153–242, 2005.
Davis, A. B., Merlin, G., Cornet, C., Labonnote, L. C., Riédi, J., Ferlay, N.,
Dubuisson, P., Min, Q., Yang, Y., and Marshak, A.: Cloud information content in EPIC/DSCOVR's
oxygen A- and B-band channels: An optimal estimation approach,
J. Quant. Spectrosc. Ra., 216, 6–16, https://doi.org/10.1016/j.jqsrt.2018.05.007, 2018.
Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C.,
Avis, C., Braverman, A., Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L.,
Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M., Mandrake,
L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O'Brien, D., Osterman, G. B., Oyafuso, F.,
Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth,
M., Tang, V., Taylor, T. E., To, C., Wunch, D., and Yoshimizu, J.: The Orbiting Carbon
Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549–563, https://doi.org/10.5194/amt-10-549-2017, 2017.
Ferlay, N., Thieuleux, F., Cornet, C., Davis, A. B., Dubuisson, P., Ducos, F., Parol,
F., Riédi, J., and Vanbauce, C.: Toward New Inferences about Cloud Structures from
Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical
Thickness from POLDER-3/ PARASOL, J. Appl. Meteorol. Climatol., 49, 2492–2507,
https://doi.org/10.1175/2010JAMC2550.1, 2010.
Fischer, J. and Grassl, H.: Detection of Cloud-Top Height from Backscattered Radiances
within the Oxygen A Band. Part 1: Theoretical Study, J. Appl. Meteorol., 30, 1245–1259,
https://doi.org/10.1175/1520-0450(1991)030<1245:DOCTHF>2.0.CO;2, 1991.
Grisel, O., Mueller, A., Lars, Gramfort, A., Louppe, G., Prettenhofer, P., Blondel, M., Niculae, V., Nothman, J., Joly, A., Vanderplas, J., Kumar, M., Fan, T. J., Qin, H., Varoquaux, N., Estève, L., Layton, R., Hug, N., Metzen, J. H., Dawe, N., Lemaitre, G., Jalali, A., Rajagopalan, V. R., Schönberger, J., Yurchak, R., Li, W., Woolam, C., Eren, K., Dupré la Tour, T., and Eustache: scikit-learn/scikit-learn: scikit-learn 0.23.2, Zenodo, https://doi.org/10.5281/zenodo.3971965, 2020.
Grosvenor, D. P., Sourdeval, O., and Wood, R.: Parameterizing cloud top effective radii
from satellite retrieved values, accounting for vertical photon transport: quantification and
correction of the resulting bias in droplet concentration and liquid water path retrievals,
Atmos. Meas. Tech., 11, 4273–4289, https://doi.org/10.5194/amt-11-4273-2018, 2018.
Heidinger, A. K. and Stephens, G. L.: Molecular Line Absorption in a Scattering
Atmosphere. Part III: Pathlength Characteristics and Effects of Spatially Heterogeneous Clouds,
J. Atmos. Sci., 59, 1641–1654,
https://doi.org/10.1175/1520-0469(2002)059<1641:MLAIAS>2.0.CO;2, 2002.
Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and de Haan, J. F.: A fast method
for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone
Monitoring Experiment, J. Geophys. Res. Atmos., 106, 3475–3490, https://doi.org/10.1029/2000JD900657,
2001.
Kokhanovsky, A. A., Rozanov, V. V., Burrows, J. P., Eichmann, K.-U., Lotz, W., and
Vountas, M.: The SCIAMACHY cloud products: Algorithms and examples from ENVISAT, Adv. Space Res.,
36, 789–799, https://doi.org/10.1016/j.asr.2005.03.026, 2005.
Kokhanovsky, A. A., Mayer, B., Rozanov, V. V., Wapler, K., Burrows, J. P. and
Schumann, U.: The influence of broken cloudiness on cloud top height retrievals using nadir
observations of backscattered solar radiation in the oxygen A-band,
J. Quant. Spectrosc. Ra., 103, 460–477, https://doi.org/10.1016/j.jqsrt.2006.06.003, 2007.
L'Ecuyer, T. S. and Jiang, J. H.: Touring the atmosphere aboard the A-Train,
Phys. Today, 63, 36–41, https://doi.org/10.1063/1.3463626, 2010.
Lindstrot, R., Preusker, R., Ruhtz, T., Heese, B., Wiegner, M., Lindemann, C., and
Fischer, J.: Validation of MERIS Cloud-Top Pressure Using Airborne Lidar Measurements,
J. Appl. Meteorol. Clim., 45, 1612–1621, https://doi.org/10.1175/JAM2436.1, 2006.
Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr,
R. J. D., Pedergnana, M., Doicu, A., Molina García, V., and Schüssler, O.: The
operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor,
Atmos. Meas. Tech., 11, 409–427, https://doi.org/10.5194/amt-11-409-2018, 2018.
McDuffie, J., Bowman, K., Hobbs, J., Natraj, V., Sarkissian, E., Smyth, M., Thill, M., and Val, S.: Reusable Framework for Retrieval of Atmospheric Composition (ReFRACtor) (Version 1.09), Zenodo, https://doi.org/10.5281/zenodo.4019567, 2020.
Merlin, G., Riedi, J., Labonnote, L. C., Cornet, C., Davis, A. B., Dubuisson, P.,
Desmons, M., Ferlay, N., and Parol, F.: Cloud information content analysis of multi-angular
measurements in the oxygen A-band: application to 3MI and MSPI, Atmos. Meas. Tech., 9, 4977–4995,
https://doi.org/10.5194/amt-9-4977-2016, 2016.
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and Effective
Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory,
J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.
Natraj, V. and Spurr, R. J. D.: A fast linearized pseudo-spherical two orders of
scattering model to account for polarization in vertically inhomogeneous scattering–absorbing
media, J. Quant. Spectrosc. Ra., 107, 263–293, https://doi.org/10.1016/j.jqsrt.2007.02.011,
2007.
O'Brien, D. M. and Mitchell, R. M.: Error Estimates for Retrieval of Cloud-Top Pressure
Using Absorption in the A Band of Oxygen, J. Appl. Meteorol., 31, 1179–1192,
https://doi.org/10.1175/1520-0450(1992)031<1179:EEFROC>2.0.CO;2, 1992.
O'Dell, C. W.: Acceleration of multiple-scattering, hyperspectral radiative transfer
calculations via low-streams interpolation, J. Geophys. Res., 115, D10206,
https://doi.org/10.1029/2009JD012803, 2010.
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R.,
Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V.,
Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The
ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic
observations, Atmos. Meas. Tech., 5, 99–121, https://doi.org/10.5194/amt-5-99-2012, 2012.
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and optical
thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements,
J. Geophys. Res., 116, D24206, https://doi.org/10.1029/2011JD016155, 2011.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Preusker, R., Fischer, J., Albert, P., Bennartz, R., and Schüller, L.: Cloud-top
pressure retrieval using the oxygen A-band in the IRS-3 MOS instrument, Int. J. Remote Sens., 28,
1957–1967, https://doi.org/10.1080/01431160600641632, 2007.
Richardson, M. and Stephens, G. L.: Information content of OCO-2 oxygen A-band channels
for retrieving marine liquid cloud properties, Atmos. Meas. Tech., 11, 1515–1528,
https://doi.org/10.5194/amt-11-1515-2018, 2018.
Richardson, M., McDuffie, J., Stephens, G. L., Cronk, H. Q., and Taylor, T. E.: The
OCO-2 oxygen A-band response to liquid marine cloud properties from CALIPSO and MODIS,
J. Geophys. Res.-Atmos., 122, 8255–8275, https://doi.org/10.1002/2017JD026561, 2017.
Richardson, M., Leinonen, J., Cronk, H. Q., McDuffie, J., Lebsock, M. D., and Stephens,
G. L.: Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer,
Atmos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-12-1717-2019, 2019.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding Theory and Practice, World
Scientific, Singapore, 2000.
Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.: Aerosol-driven
droplet concentrations dominate coverage and water of oceanic low-level clouds, Science, 363,
eaav0566, https://doi.org/10.1126/science.aav0566, 2019.
Rozanov, V. V. and Kokhanovsky, A. A.: Semianalytical cloud retrieval algorithm as
applied to the cloud top altitude and the cloud geometrical thickness determination from
top-of-atmosphere reflectance measurements in the oxygen A band, J. Geophys. Res., 109, D05202,
https://doi.org/10.1029/2003JD004104, 2004.
Schepers, D., Butz, A., Hu, H., Hasekamp, O. P., Arnold, S. G., Schneider, M., Feist,
D. G., Morino, I., Pollard, D., Aben, I., and Landgraf, J.: Methane and carbon dioxide total
column retrievals from cloudy GOSAT soundings over the oceans, J. Geophys. Res.-Atmos., 121,
5031–5050, https://doi.org/10.1002/2015JD023389, 2016.
Schuessler, O., Loyola Rodriguez, D. G., Doicu, A., and Spurr, R.: Information Content
in the Oxygen A-Band for the Retrieval of Macrophysical Cloud Parameters, IEEE
T. Geosci. Remote Sens., 52, 3246–3255, https://doi.org/10.1109/TGRS.2013.2271986, 2014.
Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete ordinate
radiative transfer code for forward model and retrieval studies in multilayer multiple scattering
media, J. Quant. Spectrosc. Ra., 102, 316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005,
2006.
Szczodrak, M., Austin, P. H., and Krummel, P. B.: Variability of Optical Depth and
Effective Radius in Marine Stratocumulus Clouds, J. Atmos. Sci., 58, 2912–2926,
https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2, 2001.
Taylor, T. E., O'Dell, C. W., Frankenberg, C., Partain, P. T., Cronk, H. Q.,
Savtchenko, A., Nelson, R. R., Rosenthal, E. J., Chang, A. Y., Fisher, B., Osterman, G. B.,
Pollock, R. H., Crisp, D., Eldering, A., and Gunson, M. R.: Orbiting Carbon Observatory-2 (OCO-2)
cloud screening algorithms: validation against collocated MODIS and CALIOP data,
Atmos. Meas. Tech., 9, 973–989, https://doi.org/10.5194/amt-9-973-2016, 2016.
Toll, V., Christensen, M., Quaas, J., and Bellouin, N.: Weak average liquid-cloud-water
response to anthropogenic aerosols, Nature, 572, 51–55, https://doi.org/10.1038/s41586-019-1423-9, 2019.
Vanbauce, C., Buriez, J. C., Parol, F., Bonnel, B., Sèze, G., and Couvert, P.:
Apparent pressure derived from ADEOS-POLDER observations in the oxygen A-band over ocean,
Geophys. Res. Lett., 25, 3159–3162, https://doi.org/10.1029/98GL02324, 1998.
Várnai, T. and Marshak, A.: Observations of Three-Dimensional Radiative Effects
that Influence MODIS Cloud Optical Thickness Retrievals, J. Atmos. Sci., 59, 1607–1618,
https://doi.org/10.1175/1520-0469(2002)059<1607:OOTDRE>2.0.CO;2, 2002.
Vidot, J., Bennartz, R., O'Dell, C. W., Preusker, R., Lindstrot, R., and Heidinger,
A. K.: CO2 Retrieval over Clouds from the OCO Mission: Model Simulations and Error
Analysis, J. Atmos. Ocean. Tech., 26, 1090–1104, https://doi.org/10.1175/2009JTECHA1200.1, 2009.
Werner, F., Zhang, Z., Wind, G., Miller, D. J., and Platnick, S.: Quantifying the
Impacts of Subpixel Reflectance Variability on Cloud Optical Thickness and Effective Radius
Retrievals Based On High-Resolution ASTER Observations, J. Geophys. Res.-Atmos., 123, 4239–4258,
https://doi.org/10.1002/2017JD027916, 2018.
Yamamoto, G. and Wark, D. Q.: Discussion of the letter by R. A. Hanel, “Determination
of cloud altitude from a satellite,” J. Geophys. Res., 66, 3596–3596,
https://doi.org/10.1029/JZ066i010p03596, 1961.
Yang, Y., Marshak, A., Mao, J., Lyapustin, A., and Herman, J.: A method of retrieving
cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space
Climate Observatory (DSCOVR) mission: Radiative transfer simulations,
J. Quant. Spectrosc. Ra., 122, 141–149, https://doi.org/10.1016/j.jqsrt.2012.09.017, 2013.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P.,
Klein, S. A., and Taylor, K. E.: Causes of higher climate sensitivity in CMIP6 models,
Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue, H.:
Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective
radius: Case studies based on large-eddy simulations, J. Geophys. Res. Atmos., 117, 19208,
https://doi.org/10.1029/2012JD017655, 2012.
Zhou, Y., Yang, Y., Gao, M., and Zhai, P.-W.: Cloud detection over snow and ice with
oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC),
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020, 2020.
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite...