Articles | Volume 13, issue 9
Atmos. Meas. Tech., 13, 4947–4961, 2020
https://doi.org/10.5194/amt-13-4947-2020
Atmos. Meas. Tech., 13, 4947–4961, 2020
https://doi.org/10.5194/amt-13-4947-2020

Research article 18 Sep 2020

Research article | 18 Sep 2020

A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties

Mark Richardson et al.

Related authors

Spectroscopic Imaging of Sub-Kilometer Spatial Structure in Lower Tropospheric Water Vapor
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-346,https://doi.org/10.5194/amt-2020-346, 2020
Revised manuscript accepted for AMT
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer
Mark Richardson, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens
Atmos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-12-1717-2019,https://doi.org/10.5194/amt-12-1717-2019, 2019
Short summary
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
Mark Richardson and Graeme L. Stephens
Atmos. Meas. Tech., 11, 1515–1528, https://doi.org/10.5194/amt-11-1515-2018,https://doi.org/10.5194/amt-11-1515-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. 
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007. 
Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field, P. R., and Elsaesser, G. S.: Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3, J. Adv. Model. Earth Sy., 11, 1735–1758, https://doi.org/10.1029/2019MS001688, 2019. 
Boesch, H., Brown, L., Castano, R., Christi, M., Connor, B., Crisp, D., Eldering, A., Fisher, B., Frankenberg, C., Gunson, M., Granat, R., McDuffie, J., Miller, C., Natraj, V., O'Brien, D., O'Dell, C., Osterman, G., Oyafuso, F., Payne, V., Polonsky, I., Smyth, M., Spurr, R., Thompson, D., and Toon, G.: Orbiting Carbon Observatory (OCO)-2 Level 2 Full Physics Algorithm Theoretical Basis Document, Pasadena, CA, available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V8.pdf (last access: 7 September 2020), 2017. 
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
Download
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.