Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-2841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
Mohammad El Aabaribaoune
CORRESPONDING AUTHOR
CECI, Université de Toulouse, CERFACS, CNRS, Toulouse, France
Emanuele Emili
CECI, Université de Toulouse, CERFACS, CNRS, Toulouse, France
Vincent Guidard
CNRM, Université de Toulouse, Météo France, CNRS, Toulouse, France
Related authors
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308, https://doi.org/10.5194/gmd-14-6291-2021, https://doi.org/10.5194/gmd-14-6291-2021, 2021
Short summary
Short summary
This study presents the latest version of the global ozone reanalysis product developed at Cerfacs. The reanalysis is based on the assimilation of satellite data from the Infrared Atmospheric Sounding Interferometer (IASI) in the Météo-France chemical transport model. The results show that the quality of the ozone fields is comparable to current state-of-the-art systems and suggest that IASI provides useful information for ozone reanalyses, especially in the upper troposphere.
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021, https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
Short summary
Numerical weather prediction involves numerically solving the mathematical equations, which describe the geophysical flow, by transforming them so that they can be computed. Through this transformation, it appears that the equations actually solved by the machine are then a modified version of the original equations, introducing an error that contributes to the model error. This work helps to characterize the covariance of the model error that is due to this modification of the equations.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frédérik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilaria D'Elia, Massimo D'Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
Geosci. Model Dev., 18, 6835–6883, https://doi.org/10.5194/gmd-18-6835-2025, https://doi.org/10.5194/gmd-18-6835-2025, 2025
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The service relies on a distributed modelling production by 11 leading European modelling teams following stringent requirements with an operational design that has no equivalent in the world. All the products are free, open, and quality-assured and disseminated with a high level of reliability.
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025, https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
Short summary
Sulfur dioxide emitted during volcanic eruptions can be hazardous for aviation safety. A recent development aims at improving the forecasts of volcanic sulfur dioxide quantities made by the chemistry transport model developed at Météo-France by assimilated infrared and ultraviolet satellite instruments. We focus on the eruption event of the La Soufrière Saint Vincent volcano in April 2021. The combined assimilation of these observations always leads to better analyses and forecasts.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
Atmos. Chem. Phys., 25, 2243–2268, https://doi.org/10.5194/acp-25-2243-2025, https://doi.org/10.5194/acp-25-2243-2025, 2025
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursor measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows an evaluation of the dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying magnitudes among the systems.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308, https://doi.org/10.5194/gmd-14-6291-2021, https://doi.org/10.5194/gmd-14-6291-2021, 2021
Short summary
Short summary
This study presents the latest version of the global ozone reanalysis product developed at Cerfacs. The reanalysis is based on the assimilation of satellite data from the Infrared Atmospheric Sounding Interferometer (IASI) in the Météo-France chemical transport model. The results show that the quality of the ozone fields is comparable to current state-of-the-art systems and suggest that IASI provides useful information for ozone reanalyses, especially in the upper troposphere.
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021, https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
Short summary
Numerical weather prediction involves numerically solving the mathematical equations, which describe the geophysical flow, by transforming them so that they can be computed. Through this transformation, it appears that the equations actually solved by the machine are then a modified version of the original equations, introducing an error that contributes to the model error. This work helps to characterize the covariance of the model error that is due to this modification of the equations.
Cited articles
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction
for satellite data in a numerical weather prediction system, Q. J.
Roy. Meteor. Soc., 133, 631–642,
https://doi.org/10.1002/qj.56, 2007. a, b
Bathmann, K. and Collard, A.: Surface‐dependent correlated infrared
observation errors and quality control in the FV3 framework, Q.
J. Roy. Meteor. Soc., 147, 408–424, https://doi.org/10.1002/qj.3925, 2020. a
Bhartia, P. K.: OMI Algorithm Theoretical Basis Document, ATBD-OMI-02, version 2.0, II, 1–91, NASA-OMI, Washington, DC, 2002. a
Borbas, E. E. and Ruston, B. C.: The RTTOV UWiremis IR land surface emissivity module, Mission Report, EUMETSAT, 0–24, 2010. a
Bormann, N., Collard, A., and Bauer, P.: Estimates of spatial and interchannel
observation-error characteristics for current sounder radiances for numerical
weather prediction. II: Application to AIRS and IASI data, Q. J.
Roy. Meteor. Soc., 136, 1051–1063, https://doi.org/10.1002/qj.615,
2010. a, b, c, d, e
Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M., and
Mcnally, A.: Enhancing the impact of IASI observations through an updated
observation-error covariance matrix, Q. J. Roy.
Meteor. Soc., 142, 1767–1780, https://doi.org/10.1002/qj.2774, 2016. a, b, c
Campbell, W. F., Satterfield, E. A., Ruston, B., and Baker, N. L.: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system, Mon. Weather Rev., 145, 1019–1032,
https://doi.org/10.1175/MWR-D-16-0240.1, 2017. a
Clarisse, L., Coheur, P. F., Prata, A. J., Hurtmans, D., Razavi, A., Phulpin, T., Hadji-Lazaro, J., and Clerbaux, C.: Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair, Atmos. Chem. Phys., 8, 7723–7734, https://doi.org/10.5194/acp-8-7723-2008, 2008. a
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009. a, b, c, d
Coopmann, O., Guidard, V., Fourrié, N., Josse, B., and Marécal, V.: Update of Infrared Atmospheric Sounding Interferometer (IASI) channel selection with correlated observation errors for numerical weather prediction (NWP), Atmos. Meas. Tech., 13, 2659–2680, https://doi.org/10.5194/amt-13-2659-2020, 2020. a, b
Courtier, P., Freydier, C., Geleyn, J.-F., Rabier, F., and Rochas, M.: The
Arpege project at Météo-France, available at: https://www.ecmwf.int/node/8798 (last access: 1 May 2020), 1991. a
Déqué, M., Dreveton, C., Braun, A., and Cariolle, D.: The
ARPEGE/IFS atmosphere model: a contribution to the French community climate
modelling, Clim. Dyn., 10, 249–266, https://doi.org/10.1007/BF00208992, 1994. a
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396,
https://doi.org/10.1256/qj.05.108, 2005. a, b, c
Dragani, R. and Mcnally, A. P.: Operational assimilation of ozone-sensitive
infrared radiances at ECMWF, Q. J. Roy. Meteor. Soc., 139, 2068–2080, https://doi.org/10.1002/qj.2106, 2013. a
Dufour, G., Eremenko, M., Griesfeller, A., Barret, B., LeFlochmoën, E., Clerbaux, C., Hadji-Lazaro, J., Coheur, P.-F., and Hurtmans, D.: Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes, Atmos. Meas. Tech., 5, 611–630, https://doi.org/10.5194/amt-5-611-2012, 2012. a, b, c
El Amraoui, L., Attié, J.-L., Semane, N., Claeyman, M., Peuch, V.-H., Warner, J., Ricaud, P., Cammas, J.-P., Piacentini, A., Josse, B., Cariolle, D., Massart, S., and Bencherif, H.: Midlatitude stratosphere – troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields, Atmos. Chem. Phys., 10, 2175–2194, https://doi.org/10.5194/acp-10-2175-2010, 2010. a
Elbern, H., Schmidt, H., and Ebel, A.: Variational data assimilation for
tropospheric chemistry modeling, J. Geophys. Res., 102, 15967–15985, https://doi.org/10.1029/97JD01213, 1997. a
Emili, E., Barret, B., Massart, S., Le Flochmoen, E., Piacentini, A., El Amraoui, L., Pannekoucke, O., and Cariolle, D.: Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model, Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014, 2014. a, b, c, d, e, f, g, h
Emili, E., Barret, B., Le Flochmoën, E., and Cariolle, D.: Comparison between the assimilation of IASI Level 2 ozone retrievals and Level 1 radiances in a chemical transport model, Atmos. Meas. Tech., 12, 3963–3984, https://doi.org/10.5194/amt-12-3963-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Fisher, M. and Lary, D. J.: Lagrangian four‐dimensional variational data
assimilation of chemical species, Q. J. Roy. Meteor. Soc., 121, 1681–1704, https://doi.org/10.1002/qj.49712152709, 1995. a
Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters,
J. W., Browell, E. V., Hair, J. W., Avery, M. A., McGee, T. J., Twigg, L. W.,
Sumnicht, G. K., Jucks, K. W., Margitan, J. J., Sen, B., Stachnik, R. A.,
Toon, G. C., Bernath, P. F., Boone, C. D., Walker, K. A., Filipiak, M. J.,
Harwood, R. S., Fuller, R. A., Manney, G. L., Schwartz, M. J., Daffer, W. H.,
Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W.,
Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner,
P. A.: Validation of Aura Microwave Limb Sounder stratospheric ozone
measurements, J. Geophys. Res., 113, D15S20,
https://doi.org/10.1029/2007jd008771, 2008. a
Garand, L., Heilliette, S., and Buehner, M.: Interchannel error correlation
associated with AIRS radiance observations: Inference and impact in data
assimilation, J. Appl. Meteorol. Climatol., 46, 714–725,
https://doi.org/10.1175/JAM2496.1, 2007. a, b
Geer, A. J.: Correlated observation error models for assimilating all-sky infrared radiances, Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019, 2019. a
Han, W. and McNally, A. P.: The 4D-Var assimilation of ozone-sensitive
infrared radiances measured by IASI, Q. J. Roy. Meteor. Soc., 136, 2025–2037, https://doi.org/10.1002/qj.708, 2010. a
Iglesias-Suarez, F., Kinnison, D. E., Rap, A., Maycock, A. C., Wild, O., and Young, P. J.: Key drivers of ozone change and its radiative forcing over the 21st century, Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, 2018. a
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, 2013. a
Irion, F. W., Kahn, B. H., Schreier, M. M., Fetzer, E. J., Fishbein, E., Fu, D., Kalmus, P., Wilson, R. C., Wong, S., and Yue, Q.: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS, Atmos. Meas. Tech., 11, 971–995, https://doi.org/10.5194/amt-11-971-2018, 2018. a
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance,
S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston, P.: On the representation error in data assimilation, Q. J. Roy. Meteor. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130,
2018. a
Jiang, Y. B., Froidevaux, L., Lambert, A., Livesey, N. J., Read, W. G., Waters,
J. W., Bojkov, B., Leblanc, T., McDermid, I. S., Godin-Beekmann, S.,
Filipiak, M. J., Harwood, R. S., Fuller, R. A., Daffer, W. H., Drouin, B. J.,
Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S.,
Schwartz, M. J., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A.,
Allaart, M., Andersen, S. B., Bodeker, G., Calpini, B., Claude, H., Coetzee,
G., Davies, J., De Backer, H., Dier, H., Fujiwara, M., Johnson, B., Kelder,
H., Leme, N. P., König-Langlo, G., Kyro, E., Laneve, G., Fook, L. S.,
Merrill, J., Morris, G., Newchurch, M., Oltmans, S., Parrondos, M. C., Posny,
F., Schmidlin, F., Skrivankova, P., Stubi, R., Tarasick, D., Thompson, A.,
Thouret, V., Viatte, P., Vömel, H., von Der Gathen, P., Yela, M., and
Zablocki, G.: Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements, J. Geophys. Res.-Atmos., 112, 1–20,
https://doi.org/10.1029/2007JD008776, 2007. a, b
Josse, B., Simon, P., and Peuch, V. H.: Radon global simulations with the
multiscale chemistry and transport model MOCAGE, Tellus B, 56, 339–356, https://doi.org/10.3402/tellusb.v56i4.16448, 2004. a
Lahoz, W. A., Errera, Q., Swinbank, R., and Fonteyn, D.: Data assimilation of stratospheric constituents: a review, Atmos. Chem. Phys., 7, 5745–5773, https://doi.org/10.5194/acp-7-5745-2007, 2007. a, b
Lefèvre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.:
Chemistry of the 1991–1992 stratospheric winter: Three-dimensional model
simulations, J. Geophys. Res.-Atmos., 99, 8183–8195,
https://doi.org/10.1029/93JD03476, 1994. a
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, 2018. a
Liu, D. C. and Nocedal, J.: On the limited memory BFGS method for large scale
optimization, Mathematical Programming, 45, 503–528,
https://doi.org/10.1007/BF01589116, 1989. a
Liu, Z.-Q. and Rabier, F.: The potential of high-density observations for
numerical weather prediction: A study with simulated observations, Q. J. Roy. Meteor. Soc., 129, 3013–3035, https://doi.org/10.1256/qj.02.170, 2003. a
MacKenzie, I. A., Tett, S. F., and Lindfors, A. V.: Climate model-simulated
diurnal cycles in HIRS clear-sky brightness temperatures, J.
Climate, 25, 5845–5863, https://doi.org/10.1175/JCLI-D-11-00552.1, 2012. a
Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production, Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, 2015. a
Martet, M., Peuch, V. H., Laurent, B., Marticorena, B., and Bergametti, G.:
Evaluation of long-range transport and deposition of desert dust with the
CTM MOCAGE, Tellus, Series B, 61 B,
449–463, https://doi.org/10.1111/j.1600-0889.2008.00413.x, 2009. a
Massart, S., Clerbaux, C., Cariolle, D., Piacentini, A., Turquety, S., and Hadji-Lazaro, J.: First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system, Atmos. Chem. Phys., 9, 5073–5091, https://doi.org/10.5194/acp-9-5073-2009, 2009. a, b, c, d
Massart, S., Piacentini, A., and Pannekoucke, O.: Importance of using ensemble
estimated background error covariances for the quality of atmospheric ozone
analyses, Q. J. Roy. Meteor. Soc., 138, 889–905, https://doi.org/10.1002/qj.971, 2012. a, b
Matricardi, M.: Technical Note: An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data, Atmos. Chem. Phys., 9, 6899–6913, https://doi.org/10.5194/acp-9-6899-2009, 2009. a
McPeters, R. D., Frith, S., and Labow, G. J.: OMI total column ozone: extending the long-term data record, Atmos. Meas. Tech., 8, 4845–4850, https://doi.org/10.5194/amt-8-4845-2015, 2015. a
Saunders, R., Hocking, J., Rundle, D., Rayer, P., Matricardi, M., Geer, A.,
Lupu, C., Brunel, P., and Vidot, J.: Rttov-11 Science and Validation
Report, EUMETSAT Satellite Application Facility on Numerical Weather
Prediction, 1–62, available at: https://www.nwpsaf.eu/site/download/documentation/rtm/docs_rttov11/rttov11_svr.pdf (last access: 12 April 2021), 2013. a
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018. a
Serio, C., Guido Masiello, P. M., and Tobin, D. C.: Characterization of
the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite
Sensors Directly from Measured Earth Views Carmine, Sensors, 20, 1492, https://doi.org/10.3390/s20051492, 2020. a
Sherlock, V.: ISEM-6: Infrared Surface Emissivity Model for RTTOV-6 for the
EUMETSAT NWP SAF, (Report for the EUMETSAT NWP SAF), available at: https://nwpsaf.eu/site/download/documentation/rtm/papers/isem6.pdf (last access: 1 May 2020), 1999. a
Sič, B., El Amraoui, L., Marécal, V., Josse, B., Arteta, J., Guth, J., Joly, M., and Hamer, P. D.: Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations, Geosci. Model Dev., 8, 381–408, https://doi.org/10.5194/gmd-8-381-2015, 2015. a
Stewart, L. M., Dance, S. L., Nichols, N. K., Eyre, J. R., and Cameron, J.:
Estimating interchannel observation-error correlations for IASI radiance
data in the Met Office system, Q. J. Roy. Meteor. Soc., 140, 1236–1244, https://doi.org/10.1002/qj.2211, 2014. a, b
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847–25879,
https://doi.org/10.1029/97JD00849, 1997.
a
Tabeart, J. M., Dance, S. L., Haben, S. A., Lawless, A. S., Nichols, N. K., and Waller, J. A.: The conditioning of least-squares problems in variational data assimilation, Numer. Linear Algebr., 25, 1–22, https://doi.org/10.1002/nla.2165, 2018. a
Tabeart, J. M., Dance, S. L., Lawless, A. S., Migliorini, S., Nichols, N. K.,
Smith, F., and Waller, J. A.: The impact of using reconditioned correlated
observation-error covariance matrices in the Met Office 1D-Var system,
Q. J. Roy. Meteor. Soc., 146, 1372–1390, https://doi.org/10.1002/qj.3741, 2020. a, b, c, d
Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, J.-L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R. J., Volz-Thomas, A., and Chéroux, F.: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes, Atmos. Chem. Phys., 7, 5815–5860, https://doi.org/10.5194/acp-7-5815-2007, 2007. a
UNEP2015: Environmental effects of ozone depletion and its interactions with
climate change: 2014 Assessment, United Nations Environment Program, 1–52, https://doi.org/10.1039/c4pp90040e, 2015. a
Waller, J. A., Ballard, S. P., Dance, S. L., Kelly, G., Nichols, N. K., and
Simonin, D.: Diagnosing horizontal and inter-channel observation error
correlations for SEVIRI observations using observation-minus-background and
observation-minus-analysis statistics, Remote Sens., 8, 581,
https://doi.org/10.3390/rs8070581, 2016. a, b
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M.,
Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A.,
Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C.,
Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S.,
Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra,
K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller,
R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C.,
Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala,
D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C., Wagner,
P. A., and Walch, M. J.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, available at: https://mls.jpl.nasa.gov/joe/EOS-MLS_Overview_IEEE_GRS_submitted.pdf (last access: 12 April 2021), 2006. a
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a
generalized diffusion equation, Q. J. Roy. Meteor. Soc., 127, 1815–1846, https://doi.org/10.1256/smsqj.57517, 2001. a
WMO: WMO (World Meteorological Organization), Scientific Assessment of Ozone
Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, Geneva, Switzerland, 416 pp., 2014. a
Short summary
This work aims to use correlated IASI errors in the ozone band within a chemical transport model assimilation. The validation of the results against ozone observations from ozonesondes, MLS, and OMI instruments has shown an improvement of the ozone distribution. The computational time was also highly reduced. The surface sea temperature was also improved. The work aims to improve the quality of the ozone prediction, which is important for air quality, climate, and meteorological applications.
This work aims to use correlated IASI errors in the ozone band within a chemical transport model...