Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2841-2021
https://doi.org/10.5194/amt-14-2841-2021
Research article
 | 
13 Apr 2021
Research article |  | 13 Apr 2021

Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model

Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard

Related authors

Impact of Infrared Atmospheric Sounding Interferometer (IASI) thermal infrared measurements on global ozone reanalyses
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308, https://doi.org/10.5194/gmd-14-6291-2021,https://doi.org/10.5194/gmd-14-6291-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary

Cited articles

Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteor. Soc., 133, 631–642, https://doi.org/10.1002/qj.56, 2007. a, b
Bathmann, K. and Collard, A.: Surface‐dependent correlated infrared observation errors and quality control in the FV3 framework, Q. J. Roy. Meteor. Soc., 147, 408–424, https://doi.org/10.1002/qj.3925, 2020. a
Bhartia, P. K.: OMI Algorithm Theoretical Basis Document, ATBD-OMI-02, version 2.0, II, 1–91, NASA-OMI, Washington, DC, 2002. a
Borbas, E. E. and Ruston, B. C.: The RTTOV UWiremis IR land surface emissivity module, Mission Report, EUMETSAT, 0–24, 2010. a
Bormann, N., Collard, A., and Bauer, P.: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: Application to AIRS and IASI data, Q. J. Roy. Meteor. Soc., 136, 1051–1063, https://doi.org/10.1002/qj.615, 2010. a, b, c, d, e
Download
Short summary
This work aims to use correlated IASI errors in the ozone band within a chemical transport model assimilation. The validation of the results against ozone observations from ozonesondes, MLS, and OMI instruments has shown an improvement of the ozone distribution. The computational time was also highly reduced. The surface sea temperature was also improved. The work aims to improve the quality of the ozone prediction, which is important for air quality, climate, and meteorological applications.
Share