Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4257-2022
https://doi.org/10.5194/amt-15-4257-2022
Research article
 | 
27 Jul 2022
Research article |  | 27 Jul 2022

High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds

Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling

Related authors

Algorithm for continual monitoring of fog life cycles based on geostationary satellite imagery as a basis for solar energy forecasting
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
EGUsphere, https://doi.org/10.5194/egusphere-2023-2885,https://doi.org/10.5194/egusphere-2023-2885, 2024
Short summary
Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021,https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
Synoptic-scale controls of fog and low-cloud variability in the Namib Desert
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020,https://doi.org/10.5194/acp-20-3415-2020, 2020
Short summary
Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite observations with machine learning
Julia Fuchs, Jan Cermak, and Hendrik Andersen
Atmos. Chem. Phys., 18, 16537–16552, https://doi.org/10.5194/acp-18-16537-2018,https://doi.org/10.5194/acp-18-16537-2018, 2018
Short summary
Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks
Hendrik Andersen, Jan Cermak, Julia Fuchs, Reto Knutti, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 9535–9546, https://doi.org/10.5194/acp-17-9535-2017,https://doi.org/10.5194/acp-17-9535-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res.-Atmos., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998. a
Andersen, H. and Cermak, J.: First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib, Atmos. Meas. Tech., 11, 5461–5470, https://doi.org/10.5194/amt-11-5461-2018, 2018. a
Bendix, J.: A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas, Atmos. Res., 64, 3–18, https://doi.org/10.1016/S0169-8095(02)00075-3, 2002. a
Bley, S. and Deneke, H.: A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI, Atmos. Meas. Tech., 6, 2713–2723, https://doi.org/10.5194/amt-6-2713-2013, 2013. a, b, c, d
Cermak, J.: SOFOS – A New Satellite-based Operational Fog Observation Scheme, PhD thesis, Philipps-Universität Marburg, http://archiv.ub.uni-marburg.de/diss/z2006/0149/ (last access: 1 October 2021), 2006. a, b, c, d
Download
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.