Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4257-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4257-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany
Hendrik Andersen
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany
Jan Cermak
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany
Eva Pauli
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany
Rob Roebeling
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
Related authors
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
Short summary
Air pollution endangers human health and poses a problem particularly in densely populated areas. Here, an explainable machine learning approach is used to analyse periods of high particle concentrations for a suburban site southwest of Paris to better understand its atmospheric drivers. Air pollution is particularly excaberated by low temperatures and low mixed layer heights, but processes vary substantially between and within seasons.
Deepanshu Malik, Hendrik Andersen, Jan Cermak, Roland Vogt, and Bianca Adler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2645, https://doi.org/10.5194/egusphere-2025-2645, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated cloud base height changes in the Namib Desert and developed a method to estimate it using ground-based humidity data. This improves fog monitoring by distinguishing fog from low clouds, which satellites alone cannot reliably do. Our results reveal diurnal patterns and linkages to coastal proximity in the vertical dynamics of fog and low clouds, highlighting key atmospheric processes with potential importance for future research.
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
Atmos. Chem. Phys., 25, 6957–6973, https://doi.org/10.5194/acp-25-6957-2025, https://doi.org/10.5194/acp-25-6957-2025, 2025
Short summary
Short summary
This study examines how ship emissions affect clouds over a shipping corridor in the southeastern Atlantic. Using satellite data from 2004 to 2023, we find that ship emissions increase the number of cloud droplets while reducing their size and slightly decrease cloud water content. Effects on seasonal and daily patterns vary based on regional factors. The impact of emissions weakened after stricter regulations were implemented in 2020.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting
Atmos. Chem. Phys., 25, 491–510, https://doi.org/10.5194/acp-25-491-2025, https://doi.org/10.5194/acp-25-491-2025, 2025
Short summary
Short summary
This study investigates the interaction between smoke aerosols and fog and low clouds (FLCs) in the Namib Desert between June and October. Here, a satellite-based dataset of FLCs, reanalysis data and machine learning are used to systematically analyze FLC persistence under different aerosol loadings. Aerosol plumes are shown to modify local thermodynamics, which increase FLC persistence. But fully disentangling aerosol effects from meteorological ones remains a challenge.
Yichen Jia, Hendrik Andersen, and Jan Cermak
Atmos. Chem. Phys., 24, 13025–13045, https://doi.org/10.5194/acp-24-13025-2024, https://doi.org/10.5194/acp-24-13025-2024, 2024
Short summary
Short summary
We present a near-global observation-based explainable machine learning framework to quantify the response of cloud fraction (CLF) of marine low clouds to cloud droplet number concentration (Nd), accounting for the covariations with meteorological factors. This approach provides a novel data-driven method to analyse the CLF adjustment by assessing the CLF sensitivity to Nd and numerous meteorological factors as well as the dependence of the Nd–CLF sensitivity on the meteorological conditions.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Babak Jahani, Hendrik Andersen, Josep Calbó, Josep-Abel González, and Jan Cermak
Atmos. Chem. Phys., 22, 1483–1494, https://doi.org/10.5194/acp-22-1483-2022, https://doi.org/10.5194/acp-22-1483-2022, 2022
Short summary
Short summary
The change in the state of sky from cloudy to cloudless (or vice versa) comprises an additional phase called
transition zonewith characteristics laying between those of aerosols and clouds. This study presents an approach for the quantification of the broadband longwave radiative effects of the cloud–aerosol transition zone at the top of the atmosphere during daytime over the ocean based on satellite observations and radiative transfer simulations.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
Short summary
Air pollution endangers human health and poses a problem particularly in densely populated areas. Here, an explainable machine learning approach is used to analyse periods of high particle concentrations for a suburban site southwest of Paris to better understand its atmospheric drivers. Air pollution is particularly excaberated by low temperatures and low mixed layer heights, but processes vary substantially between and within seasons.
Cited articles
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.:
Discriminating clear sky from clouds with MODIS, J. Geophys. Res.-Atmos., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998. a
Andersen, H. and Cermak, J.:
First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib, Atmos. Meas. Tech., 11, 5461–5470, https://doi.org/10.5194/amt-11-5461-2018, 2018. a
Bendix, J.:
A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas, Atmos. Res., 64, 3–18, https://doi.org/10.1016/S0169-8095(02)00075-3, 2002. a
Bley, S. and Deneke, H.:
A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI, Atmos. Meas. Tech., 6, 2713–2723, https://doi.org/10.5194/amt-6-2713-2013, 2013. a, b, c, d
Cermak, J. and Bendix, J.:
A novel approach to fog/low stratus detection using Meteosat 8 data, Atmos. Res., 87, 279–292, https://doi.org/10.1016/j.atmosres.2007.11.009, 2008. a
Chen, P. Y., Srinivasan, R., and Fedosejevs, G.:
An automated cloud detection method for daily NOAA 16 advanced very high resolution radiometer data over Texas and Mexico, J. Geophys. Res.-Atmos., 108, 1–9, https://doi.org/10.1029/2003jd003554, 2003. a
Collier, C. G.:
The impact of urban areas on weather, Q. J. Roy. Meteor. Soc., 132, 1–25, https://doi.org/10.1256/qj.05.199, 2006. a, b
Deneke, H., Feijt, A., van Lammeren, A., and Simmer, C.:
Validation of a physical retrieval scheme of solar surface irradiances from narrowband satellite radiances, J. Appl. Meteorol., 44, 1453–1466, https://doi.org/10.1175/JAM2290.1, 2005. a
Deneke, H. M. and Roebeling, R. A.:
Downscaling of METEOSAT SEVIRI 0.6 and 0.8 µm channel radiances utilizing the high-resolution visible channel, Atmos. Chem. Phys., 10, 9761–9772, https://doi.org/10.5194/acp-10-9761-2010, 2010. a, b
Deneke, H. M., Knap, W. H., and Simmer, C.:
Multiresolution analysis of the temporal variance and correlation of transmittance and reflectance of an atmospheric column, J. Geophys. Res.-Atmos., 114, D17206, https://doi.org/10.1029/2008JD011680, 2009. a
Derrien, M., Gléau, H. L., and Raoul, M.:
The use of the high resolution visible in SAFNWC/MSG cloud mask, Proceedings of the 2010 EUMETSAT Meteorological Satellite Conference, 20–24 September 2010, Córdoba, Spain, 57 pp., http://hal.archives-ouvertes.fr/meteo-00604325/ (last access: 5 July 2021), 2010. a
Di Vittorio, A. V. and Emery, W. J.:
An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land, IEEE T. Geosci. Remote, 40, 1682–1694, https://doi.org/10.1109/TGRS.2002.802455, 2002. a
Dozier, J. and Painter, T. H.:
Multispectral and hyperspectral remote sensing of alpine snow properties, Annu. Rev. Earth Pl. Sc., 32, 465–494, https://doi.org/10.1146/annurev.earth.32.101802.120404, 2004. a
EUMETSAT: EUMETSAT CM SAF Algorithm Theoretical Basis Document (ATBD) Meteosat Solar Surface Radiation and effective Cloud Albedo Climate Data Records - Heliosat (SARAH-2), Satellite Application Facility on Climate Monitoring (CM SAF), 31 pp., https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01, 2019 (data available at: https://www.eumetsat.int/access-our-data, last access: 22 April 2020). a, b, c, d
Fan, J., Wang, Y., Rosenfeld, D., Liu, X., Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.:
Review of Aerosol-Cloud Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016. a
Greuell, W. and Roebeling, R. A.:
Toward a standard procedure for validation of satellite-derived cloud liquid water path: A study with SEVIRI data, J. Appl. Meteorol. Clim., 48, 1575–1590, https://doi.org/10.1175/2009JAMC2112.1, 2009. a, b
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R.:
SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253–275, https://doi.org/10.5194/angeo-23-253-2005, 2005. a, b
Hall, D. K., Riggs, G. A., and Salomonson, V. V.:
Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms, Tech. rep., NASA (National Aeronautics and Space Administration), Goddard Space Flight Center, Greenbelt, MD, 2001. a
Han, J.-Y., Baik, J.-J., and Lee, H.:
Urban impacts on precipitation, Asia-Pac. J. Atmos. Sci., 50, 17–30, https://doi.org/10.1007/s13143-014-0016-7, 2014. a
Henken, C. C., Schmeits, M. J., Deneke, H., and Roebeling, R. A.:
Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds, J. Appl. Meteorol. Clim., 50, 1587–1600, https://doi.org/10.1175/2011JAMC2601.1, 2011. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018 (data available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, last access: 2 November 2021). a, b, c
Hutchison, K. D., Roskovensky, J. K., Jackson, J. M., Heidinger, A. K., Kopp, T. J., Pavolonis, M. J., and Frey, R.:
Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS), Int. J. Remote Sens., 26, 4681–4706, https://doi.org/10.1080/01431160500196786, 2005. a
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Brooks, M. E., Delanoë, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J. W., Haeffelin, M., Klein Baltinik, H., Krasnov, O. A., Pelon, J., Piriou, J. M., Protat, A., Russchenberg, H. W., Seifert, A., Tompkins, A. M., van Zadelhoff, G. J., Vinit, F., Willen, U., Wilson, D. R., and Wrench, C. L.:
Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations, B. Am. Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007 (data available at: https://actris.nilu.no/, last access: 2 February 2020). a, b
Ipe, A., Clerbaux, N., Bertrand, C., Dewitte, S., and Gonzalez, L.:
Pixel-scale composite top-of-the-atmosphere clear-sky reflectances for Meteosat-7 visible data, J. Geophys. Res.-Atmos., 108, 1–7, https://doi.org/10.1029/2002jd002771, 2003. a, b
Jain, A., Duin, R. P. W., and Mao, J.:
Statistical pattern recognition: a review, IEEE T. Pattern Anal., 22, 4–37, https://doi.org/10.1109/34.824819, 2000. a
Kim, M., Cermak, J., Andersen, H., Fuchs, J., and Stirnberg, R.:
A new satellite-based retrieval of low-cloud liquid-water path using machine learning and meteosat seviri data, Remote Sens.-Basel, 12, 1–16, https://doi.org/10.3390/rs12213475, 2020. a
Klüser, L., Rosenfeld, D., Macke, A., and Holzer-Popp, T.:
Observations of shallow convective clouds generated by solar heating of dark smoke plumes, Atmos. Chem. Phys., 8, 2833–2840, https://doi.org/10.5194/acp-8-2833-2008, 2008. a
Liang, X., Miao, S., Li, J., Bornstein, R., Zhang, X., Gao, Y., Chen, F., Cao, X., Cheng, Z., Clements, C., Dabberdt, W., Ding, A., Ding, D., Dou, J. J., Dou, J. X., Dou, Y., Grimmond, C. S., Gonzál, J. E., He, J., Huang, M., Huang, X., Ju, S., Li, Q., NiYogi, D., Quan, J., Sun, J., Sun, J. Z., Yu, M., Zhang, J., Zhang, Y., Zhao, X., Zheng, Z., and Zhou, M.:
Surf: Understanding and predicting urban convection and haze, B. Am. Meteorol. Soc., 99, 1391–1413, https://doi.org/10.1175/BAMS-D-16-0178.1, 2018. a
Matthews, E. and Rossow, W. B.:
Regional and Seasonal Variations of Surface Reflectance from Satellite Observations at 0.6 µm, J. Clim. Appl. Meteorol., 26, 170–202, https://doi.org/10.1175/1520-0450(1987)026<0170:RASVOS>2.0.CO;2, 1987. a
Minnis, P. and Harrison, E. F.:
Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 radiative parameters., J. Clim. Appl. Meteorol., 23, 1032–1051, https://doi.org/10.1175/1520-0450(1984)023<1032:DVORCA>2.0.CO;2, 1984. a
Nilo, S. T., Romano, F., Cermak, J., Cimini, D., Ricciardelli, E., Cersosimo, A., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., Larosa, S., Ripepi, E., and Viggiano, M.:
Fog detection based on Meteosat Second Generation-Spinning enhanced visible and infrared imager high resolution visible channel, Remote Sens.-Basel, 10, 1–20, https://doi.org/10.3390/rs10040541, 2018. a
Pauli, E., Cermak, J., and Teuling, A. J.: Enhanced nighttime fog and low stratus occurrence over the Landes forest, France, Geophys. Res. Lett., 49, e2021GL097058, https://doi.org/10.1029/2021GL097058, 2022. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.1007/s13398-014-0173-7.2, 2011. a
Richter, R., Louis, J., and Berthelot, B.:
Sentinel-2 MSI – Level 2A Products Algorithm Theoretical Basis Document, European Space Agency, ESA SP Publ., 49, 1–72, 2012. a
Rossow, W. B. and Garder, L. C.:
Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP, J. Climate, 6, 2341–2369, https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2, 1993. a
Saunders, R. W. and Kriebel, K. T.:
An improved method for detecting clear sky and cloudy radiances from AVHRR data, Int. J. Remote Sens., 9, 123–150, https://doi.org/10.1080/01431168808954841, 1988. a
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A.: AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG), B. Am. Meteorol. Soc., 83, 977–992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002. a
Schulz, H. M., Thies, B., Cermak, J., and Bendix, J.:
1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data, Atmos. Meas. Tech., 5, 2469–2480, https://doi.org/10.5194/amt-5-2469-2012, 2012. a
Schutgens, N. A. and Roebeling, R. A.:
Validating the validation: the influence of liquid water distribution in clouds on the intercomparison of satellite and surface observations, J. Atmos. Ocean. Tech., 26, 1457–1474, https://doi.org/10.1175/2009JTECHA1226.1, 2009. a
Shepherd, J. M.:
A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future, Earth Interact., 9, 1–27, https://doi.org/10.1175/EI156.1, 2005. a, b
Stowe, L. L., Davis, P. A., and Mcclain, E. P.:
Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the advanced very high resolution radiometer, J. Atmos. Ocean. Tech., 16, 656–681, https://doi.org/10.1175/1520-0426(1999)016<0656:SBAIEO>2.0.CO;2, 1999. a
Strabala, K. I., Ackerman, S. A., and Menzel, W. P.: Cloud Properties inferred from 8–12- µm Data, J. Appl. Meteorol., 33, 212–229, https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2, 1994. a
Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G., van Heerwaarden, C. C., Vautard, R., Stegehuis, A. I., Nabuurs, G.-J., and de Arellano, J. V.-G.:
Observational evidence for cloud cover enhancement over western European forests, Nat. Commun., 8, 14065, https://doi.org/10.1038/ncomms14065, 2017. a, b, c, d
Tøttrup, C.:
EU-DEM Statistical Validation Report August 2014, European Environment Agency (EEA), Copenhagen, Denmark, p. 27, 2014. a
Underwood, S. J. and Hansen, C.:
Investigating urban clear islands in fog and low stratus clouds in the San Joaquin Valley of California, Phys. Geogr., 29, 442–454, https://doi.org/10.2747/0272-3646.29.5.442, 2008. a
Varentsov, M., Wouters, H., Platonov, V., and Konstantinov, P.:
Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia, Atmosphere, 9, 50, https://doi.org/10.3390/atmos9020050, 2018. a
Veefkind, J. P., de Haan, J. F., Sneep, M., and Levelt, P. F.:
Improvements to the OMI operational cloud algorithm and comparisons with ground-based radar–lidar observations, Atmos. Meas. Tech., 9, 6035–6049, https://doi.org/10.5194/amt-9-6035-2016, 2016. a
Wærsted, E. G., Haeffelin, M., Steeneveld, G., and Dupont, J.:
Understanding the dissipation of continental fog by analysing the LWP budget using idealized LES and in situ observations, Q. J. Roy. Meteor. Soc., 145, 784–804, https://doi.org/10.1002/qj.3465, 2019.
a
Westerhuis, S., Fuhrer, O., Cermak, J., and Eugster, W.:
Identifying the key challenges for fog and low stratus forecasting in complex terrain, Q. J. Roy. Meteor. Soc., 146, 3347–3367, https://doi.org/10.1002/qj.3849, 2020. a, b
Williams, A. P., Schwartz, R. E., Iacobellis, S., Seager, R., Cook, B. I., Still, C. J., Husak, G., and Michaelsen, J.:
Urbanization causes increased cloud base height and decreased fog in coastal Southern California, Geophys. Res. Lett., 42, 1527–1536, https://doi.org/10.1002/2015GL063266, 2015. a
Yang, Y., Di Girolamo, L., and Mazzoni, D.:
Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land, Remote Sen. Environ., 107, 159–171, https://doi.org/10.1016/j.rse.2006.05.020, 2007. a, b, c
Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X.-Q., and Liu, D.:
Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China, Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, 2017. a
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite...