Articles | Volume 15, issue 15
https://doi.org/10.5194/amt-15-4463-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4463-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cavity ring-down spectroscopy of water vapor in the deep-blue region
Qing-Ying Yang
Hefei National Laboratory and Department of Chemical Physics,
University of Science and Technology of China, Hefei, 230026 China
Eamon K. Conway
Center for Astrophysics, Harvard and Smithsonian, Atomic and Molecular Physics Division,
Cambridge, MA 02138, USA
Kostas Research Institute for Homeland Security,
Burlington, MA 01803, USA
Hui Liang
Hefei National Laboratory and Department of Chemical Physics,
University of Science and Technology of China, Hefei, 230026 China
Iouli E. Gordon
Center for Astrophysics, Harvard and Smithsonian, Atomic and Molecular Physics Division,
Cambridge, MA 02138, USA
Hefei National Laboratory and Department of Chemical Physics,
University of Science and Technology of China, Hefei, 230026 China
Shui-Ming Hu
Hefei National Laboratory and Department of Chemical Physics,
University of Science and Technology of China, Hefei, 230026 China
Related authors
No articles found.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022, https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
Juseon Bak, Xiong Liu, Manfred Birk, Georg Wagner, Iouli E. Gordon, and Kelly Chance
Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020, https://doi.org/10.5194/amt-13-5845-2020, 2020
Short summary
Short summary
This paper evaluates different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on BDM 1995 (Daumont et al. 1992; Brion et al., 1993; Malicet et al., 1995) currently used in our retrievals and a new laboratory dataset by Birk and Wagner (BW) (2018).
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Short summary
Water vapour has a complex spectrum and absorbs from the microwave to the near-UV where it dissociates. There is limited knowledge of the absorption features in the near-UV, and there is a large disagreement for the available models and experiments. We created a new ab initio model that is in good agreement with observation at 363 nm. At lower wavelengths, our calculations suggest that the latest experiments overestimate absorption. This has implications for trace gas retrievals in the near-UV.
R. V. Kochanov, I. E. Gordon, L. S. Rothman, S. W. Sharpe, T. J. Johnson, and R. L. Sams
Clim. Past, 11, 1097–1105, https://doi.org/10.5194/cp-11-1097-2015, https://doi.org/10.5194/cp-11-1097-2015, 2015
Short summary
Short summary
In the article Clim Past 10, 1779 (2014), the HITRAN2012 database was employed to evaluate the radiative forcing of 28 Archean gases. The authors claimed that for NO2, H2O2, C2H4, CH3OH, and CH3Br there are severe disagreements between cross sections generated from the HITRAN line-by-line data and those of the PNNL experimental database. In this work we show that the differences are not nearly at the scale suggested by the authors, and their conclusions about these gases and HO2 are not correct.
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Atmospheric H2 observations from the NOAA Cooperative Global Air Sampling Network
Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: insights into the gas phase chemistry of NO3-initiated oxidation of isoprene
Wall loss of semi-volatile organic compounds in a Teflon bag chamber for the temperature range of 262–298 K: mechanistic insight on temperature dependence
Obtaining accurate non-methane hydrocarbon data for ambient air in urban areas: comparison of non-methane hydrocarbon data between indirect and direct methods
Reconstruction of high-frequency methane atmospheric concentration peaks from measurements using metal oxide low-cost sensors
Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles
Orbitool: a software tool for analyzing online Orbitrap mass spectrometry data
Dynamic infrared gas analysis from longleaf pine fuel beds burned in a wind tunnel: observation of phenol in pyrolysis and combustion phases
High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 µm
Mapping and quantifying isomer sets of hydrocarbons ( ≥ C12) in diesel exhaust, lubricating oil and diesel fuel samples using GC × GC-ToF-MS
Measurement of alkyl and multifunctional organic nitrates by proton-transfer-reaction mass spectrometry
Uncertainty budgets of major ozone absorption cross sections used in UV remote sensing applications
New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)
High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K
High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence
Maintaining consistent traceability in high-precision isotope measurements of CO2: a way to verify atmospheric trends of δ13C and δ18O
On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry
OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber
Water isotopic ratios from a continuously melted ice core sample
Gabrielle Pétron, Andrew M. Crotwell, John Mund, Molly Crotwell, Thomas Mefford, Kirk Thoning, Bradley Hall, Duane Kitzis, Monica Madronich, Eric Moglia, Donald Neff, Sonja Wolter, Armin Jordan, Paul Krummel, Ray Langenfelds, and John Patterson
Atmos. Meas. Tech., 17, 4803–4823, https://doi.org/10.5194/amt-17-4803-2024, https://doi.org/10.5194/amt-17-4803-2024, 2024
Short summary
Short summary
Hydrogen (H2) is a gas in trace amounts in the Earth’s atmosphere with indirect impacts on climate and air quality. Renewed interest in H2 as a low- or zero-carbon source of energy may lead to increased production, uses, and supply chain emissions. NOAA measurements of weekly air samples collected between 2009 and 2021 at over 50 sites in mostly remote locations are now available, and they complement other datasets to study the H2 global budget.
Rongrong Wu, Sören R. Zorn, Sungah Kang, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Meas. Tech., 17, 1811–1835, https://doi.org/10.5194/amt-17-1811-2024, https://doi.org/10.5194/amt-17-1811-2024, 2024
Short summary
Short summary
Recent advances in high-resolution time-of-flight chemical ionization mass spectrometry (CIMS) enable the detection of highly oxygenated organic molecules, which efficiently contribute to secondary organic aerosol. Here we present an application of fuzzy c-means (FCM) clustering to deconvolve CIMS data. FCM not only reduces the complexity of mass spectrometric data but also the chemical and kinetic information retrieved by clustering gives insights into the chemical processes involved.
Longkun He, Wenli Liu, Yatai Li, Jixuan Wang, Mikinori Kuwata, and Yingjun Liu
Atmos. Meas. Tech., 17, 755–764, https://doi.org/10.5194/amt-17-755-2024, https://doi.org/10.5194/amt-17-755-2024, 2024
Short summary
Short summary
We experimentally investigated vapor wall loss of n-alkanes in a Teflon chamber across a wide temperature range. Increased wall loss was observed at lower temperatures. Further analysis suggests that lower temperatures enhance partitioning of n-alkanes to the surface layer of a Teflon wall but slow their diffusion into the inner layer. The results are important for quantitative analysis of chamber experiments conducted at low temperatures, simulating wintertime or upper-tropospheric conditions.
Song Gao, Yong Yang, Xiao Tong, Linyuan Zhang, Yusen Duan, Guigang Tang, Qiang Wang, Changqing Lin, Qingyan Fu, Lipeng Liu, and Lingning Meng
Atmos. Meas. Tech., 16, 5709–5723, https://doi.org/10.5194/amt-16-5709-2023, https://doi.org/10.5194/amt-16-5709-2023, 2023
Short summary
Short summary
We optimized and conducted an experimental program for the real-time monitoring of non-methane hydrocarbon instruments using the direct method. Changing the enrichment and specially designed columns further improved the test effect. The results correct the measurement errors that have prevailed for many years and can lay a foundation for the evaluation of volatile organic compounds in the regional ambient air and provide direction for the measurement of low-concentration ambient air pollutants.
Rodrigo Andres Rivera Martinez, Diego Santaren, Olivier Laurent, Gregoire Broquet, Ford Cropley, Cécile Mallet, Michel Ramonet, Adil Shah, Leonard Rivier, Caroline Bouchet, Catherine Juery, Olivier Duclaux, and Philippe Ciais
Atmos. Meas. Tech., 16, 2209–2235, https://doi.org/10.5194/amt-16-2209-2023, https://doi.org/10.5194/amt-16-2209-2023, 2023
Short summary
Short summary
A network of low-cost sensors is a good alternative to improve the detection of fugitive CH4 emissions. We present the results of four tests conducted with two types of Figaro sensors that were assembled on four chambers in a laboratory experiment: a comparison of five models to reconstruct the CH4 signal, a strategy to reduce the training set size, a detection of age effects in the sensors and a test of the capability to transfer a model between chambers for the same type of sensor.
Christos Stamatis and Kelley Claire Barsanti
Atmos. Meas. Tech., 15, 2591–2606, https://doi.org/10.5194/amt-15-2591-2022, https://doi.org/10.5194/amt-15-2591-2022, 2022
Short summary
Short summary
Building on the identification of hundreds of gas-phase chemicals in smoke samples from laboratory and field studies, an algorithm was developed that successfully identified chemical patterns that were consistent among types of trees and unique between types of trees that are common fuels in western coniferous forests. The algorithm is a promising approach for selecting chemical speciation profiles for air quality modeling using a highly reduced suite of measured compounds.
Runlong Cai, Yihao Li, Yohann Clément, Dandan Li, Clément Dubois, Marlène Fabre, Laurence Besson, Sebastien Perrier, Christian George, Mikael Ehn, Cheng Huang, Ping Yi, Yingge Ma, and Matthieu Riva
Atmos. Meas. Tech., 14, 2377–2387, https://doi.org/10.5194/amt-14-2377-2021, https://doi.org/10.5194/amt-14-2377-2021, 2021
Short summary
Short summary
Orbitool is an open-source software tool, mainly coded in Python, with a graphical user interface (GUI), specifically developed to facilitate the analysis of online Orbitrap mass spectrometric data. It is notably optimized for long-term atmospheric measurements and laboratory studies.
Catherine A. Banach, Ashley M. Bradley, Russell G. Tonkyn, Olivia N. Williams, Joey Chong, David R. Weise, Tanya L. Myers, and Timothy J. Johnson
Atmos. Meas. Tech., 14, 2359–2376, https://doi.org/10.5194/amt-14-2359-2021, https://doi.org/10.5194/amt-14-2359-2021, 2021
Short summary
Short summary
We have developed a novel method to identify and characterize the gases emitted in biomass burning fires in a time-resolved fashion. Using time-resolved infrared spectroscopy combined with time-resolved thermal imaging in a wind tunnel, we were able to capture the gas-phase dynamics of the burning of plants native to the southeastern United States.
Jing Tang, Bincheng Li, and Jing Wang
Atmos. Meas. Tech., 12, 2851–2861, https://doi.org/10.5194/amt-12-2851-2019, https://doi.org/10.5194/amt-12-2851-2019, 2019
Short summary
Short summary
A high-sensitivity CH4 and N2O sensor based on mid-IR (7.6 µm) cavity ring-down spectroscopy was developed. The effect of temperature fluctuation on measurement sensitivity was analyzed and corrected, and detection limits of 5 pptv for CH4 and 9 pptv for N2O were experimentally achieved. Separate and continuous measurements of CH4 and N2O concentrations of indoor and outdoor air at different locations showed the spatial and temporal concentration variations of CH4 and N2O in air.
Mohammed S. Alam, Soheil Zeraati-Rezaei, Zhirong Liang, Christopher Stark, Hongming Xu, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Meas. Tech., 11, 3047–3058, https://doi.org/10.5194/amt-11-3047-2018, https://doi.org/10.5194/amt-11-3047-2018, 2018
Short summary
Short summary
Diesel fuel, lubricating oil and diesel exhaust emissions all contain a very complex mixture of chemical compounds with diverse molecular structures. The GC × GC-ToF-MS analytical method is a very powerful way of separating and identifying those compounds. This paper describes the allocation of compounds into groups with similar molecular structures and chemical properties, which facilitates the intercomparison of very complex mixtures such as are found in diesel fuel, oil and emissions.
Marius Duncianu, Marc David, Sakthivel Kartigueyane, Manuela Cirtog, Jean-François Doussin, and Benedicte Picquet-Varrault
Atmos. Meas. Tech., 10, 1445–1463, https://doi.org/10.5194/amt-10-1445-2017, https://doi.org/10.5194/amt-10-1445-2017, 2017
Short summary
Short summary
A commercial PTR-ToF-MS has been optimized in order to allow the measurement of individual organic nitrates in the atmosphere. This has been accomplished by shifting the distribution between different ionizing analytes. The proposed approach has been proved to be appropriate for the online detection of individual alkyl nitrates and functionalized nitrates.
Mark Weber, Victor Gorshelev, and Anna Serdyuchenko
Atmos. Meas. Tech., 9, 4459–4470, https://doi.org/10.5194/amt-9-4459-2016, https://doi.org/10.5194/amt-9-4459-2016, 2016
Short summary
Short summary
Ozone absorption cross sections measured in the laboratory using spectroscopic means can be a major source of uncertainty in atmospheric ozone retrievals. In this paper we assess the overall uncertainty in three published UV ozone cross-section datasets that are most popular in the remote sensing community. The overall uncertainties were estimated using Monte Carlo simulations. They are important for traceability of atmospheric ozone measuring instruments to common metrological standards.
Jeremy J. Harrison
Atmos. Meas. Tech., 9, 2593–2601, https://doi.org/10.5194/amt-9-2593-2016, https://doi.org/10.5194/amt-9-2593-2016, 2016
Short summary
Short summary
Using infrared sounders on satellite platforms to monitor concentrations of atmospheric HCFC-22, a stratospheric-ozone-depleting molecule which is still increasing in the atmosphere, crucially requires accurate laboratory spectroscopic data. This manuscript describes a new high-resolution infrared absorption cross-section data set for remote-sensing purposes; this improves upon the one currently available in the HITRAN and GEISA databases.
V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, https://doi.org/10.5194/amt-7-609-2014, 2014
A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, https://doi.org/10.5194/amt-7-625-2014, 2014
L. Huang, A. Chivulescu, D. Ernst, W. Zhang, A.-L. Norman, and Y.-S. Lee
Atmos. Meas. Tech., 6, 1685–1705, https://doi.org/10.5194/amt-6-1685-2013, https://doi.org/10.5194/amt-6-1685-2013, 2013
J. Schmitt, B. Seth, M. Bock, C. van der Veen, L. Möller, C. J. Sapart, M. Prokopiou, T. Sowers, T. Röckmann, and H. Fischer
Atmos. Meas. Tech., 6, 1425–1445, https://doi.org/10.5194/amt-6-1425-2013, https://doi.org/10.5194/amt-6-1425-2013, 2013
P. Barmet, J. Dommen, P. F. DeCarlo, T. Tritscher, A. P. Praplan, S. M. Platt, A. S. H. Prévôt, N. M. Donahue, and U. Baltensperger
Atmos. Meas. Tech., 5, 647–656, https://doi.org/10.5194/amt-5-647-2012, https://doi.org/10.5194/amt-5-647-2012, 2012
V. Gkinis, T. J. Popp, T. Blunier, M. Bigler, S. Schüpbach, E. Kettner, and S. J. Johnsen
Atmos. Meas. Tech., 4, 2531–2542, https://doi.org/10.5194/amt-4-2531-2011, https://doi.org/10.5194/amt-4-2531-2011, 2011
Cited articles
Bernath, P. F., Brown, L. R., Campargue, A., Császár, A. G.,
Daumont, L., Gamache, R. R., Hodges, J. T., Naumenko, O. V., Polyansky,
O. L., Rothman, L. S., Toth, R. A., Vandaele, A. C., Zobov, N. F., Fally, S.,
Fazliev, A. Z., Furtenbacher, T., Gordon, I. E., Hu, S.-M., Mikhailenko,
S. N., and Voronin, B. A.: IUPAC critical evaluation of the
rotational–vibrational spectra of water vapor. Part II: Energy levels and
transition wavenumbers for HD16O, HD17O, and HD18O, J. Quant. Spectrosc. Ra., 111, 2160–2184,
https://doi.org/10.1016/J.JQSRT.2010.06.012, 2010. a
Callegari, A., Theulé, P., Muenter, J. S., Tolchenov, R. N., Zobov,
N. F., Polyansky, O. L., Tennyson, J., and Rizzo, T. R.: Dipole moments of
highly vibrationally excited water, Science, 297, 993–995,
https://doi.org/10.1126/science.1073731, 2002. a
Carleer, M., Jenouvrier, A., Vandaele, A.-C., Bernath, P. F., Mérienne,
M. F., Colin, R., Zobov, N. F., Polyansky, O. L., Tennyson, J., and Savin,
V. A.: The near infrared, visible, and near ultraviolet overtone spectrum of
water, J. Chem. Phys., 111, 2444–2450,
https://doi.org/10.1063/1.479859, 1999. a
Chance, K.: Ultraviolet and visible spectroscopy and spaceborne remote sensing
of the Earth's atmosphere, C. R. Phys., 6, 836–847,
https://doi.org/10.1016/j.crhy.2005.07.010, 2005. a, b
Chung, C.-Y., Chew, E. P., Cheng, B.-M., Bahou, M., and Lee, Y.-P.:
Temperature dependence of absorption cross-section of H2O, HOD, and D2O in
the spectral region 140–193 nm, Nucl. Instrum. Methods Phys. Res. A, 467–468, 1572–1576, https://doi.org/10.1016/S0168-9002(01)00762-8,
2001. a
Coheur, P. F., Fally, S., Carleer, M., Clerbaux, C., Colin, R., Jenouvrier, A.,
Mérienne, M. F., Hermans, C., and Vandaele, A. C.: New water vapor
line parameters in the 26000-13000 cm−1 region, J. Quant. Spectrosc. Ra., 74, 493–510,
https://doi.org/10.1016/S0022-4073(01)00269-2, 2002. a
Coheur, P. F., Clerbaux, C., Carleer, M., Fally, S., Hurtmans, D., Colin, R.,
Hermans, C., Vandaele, A. C., Barret, B., De Mazière, M., and De
Backer, H.: Retrieval of atmospheric water vapor columns from FT visible
solar absorption spectra and evaluation of spectroscopic databases, J. Quant. Spectrosc. Ra., 82, 133–150,
https://doi.org/10.1016/S0022-4073(03)00150-X, 2003. a
Conway, E. K., Gordon, I. E., Tennyson, J., Polyansky, O. L., Yurchenko, S. N., and Chance, K.: A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet, Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Császár, A. G., Mátyus, E., Szidarovszky, T., Lodi, L., Zobov, N. F.,
Shirin, S. V., Polyansky, O. L., and Tennyson, J.: First-principles
prediction and partial characterization of the vibrational states of water up
to dissociation, J. Quant. Spectrosc. Ra.,
111, 1043–1064, https://doi.org/10.1016/j.jqsrt.2010.02.009,
2010. a
Fally, S., Coheur, P. F., Carleer, M., Clerbaux, C., Colin, R., Jenouvrier, A.,
Mérienne, M. F., Hermans, C., and Vandaele, A. C.: Water vapor line
broadening and shifting by air in the 26 000–13 000 cm−1 region,
J. Quant. Spectrosc. Ra., 82, 119–131,
https://doi.org/10.1016/S0022-4073(03)00149-3, 2003. a
Finkenzeller, H. and Volkamer, R.: O2–O2 CIA in the gas phase: Cross-section
of weak bands, and continuum absorption between 297–500 nm, J. Quant. Spectrosc. Ra., 279, 108063,
https://doi.org/10.1016/j.jqsrt.2021.108063, 2022. a
Furtenbacher, T., Tóbiás, R., Tennyson, J., Polyansky, O. L., and
Császár, A. G.: W2020: A Database of Validated Rovibrational
Experimental Transitions and Empirical Energy Levels of H O, J. Phys. Chem. Ref. Data, 49, 033101, https://doi.org/10.1063/5.0008253, 2020. a
Gordon, I. E., Rothman, L., Hill, C., Kochanov, R., Tan, Y., Bernath, P. F.,
Birk, M., Boudon, V., Campargue, A., Chance, K., Drouin, B., Flaud, J.-M.,
Gamache, R., Hodges, J., Jacquemart, D., Perevalov, V., Perrin, A., Shine,
K., Smith, M.-A., Tennyson, J., Toon, G., Tran, H., Tyuterev, V., Barbe, A.,
Császár, A., Devi, V., Furtenbacher, T., Harrison, J., Hartmann,
J.-M., Jolly, A., Johnson, T., Karman, T., Kleiner, I., Kyuberis, A., Loos,
J., Lyulin, O., Massie, S., Mikhailenko, S., Moazzen-Ahmadi, N.,
Müller, H., Naumenko, O., Nikitin, A., Polyansky, O., Rey, M., Rotger,
M., Sharpe, S., Sung, K., Starikova, E., Tashkun, S., Auwera, J. V., Wagner,
G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E.: The HITRAN2016
molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017. a, b, c
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets,
E. V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y.,
Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon,
V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J. M.,
Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin, A. V.,
Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H. L.,
Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Canè, E.,
Császár, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J.,
Fleurbaey, H., Foltynowicz, A. A., Furtenbacher, T., Harrison, J. J. B.,
Hartmann, J. M., Horneman, V. M. E., Huang, X. F., Karman, T., Karns, J.,
Kassi, S., Kleiner, I. M., Kofman, V. R., M, F. K. T., Lavrentieva, N. N.,
Lee, T. J. G., Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., N, V. Y. M.,
Matt, W., Massie, S. T. H., Melosso, M., Mikhailenko, S. N., Mondelain, D.,
Müller, H. S. P. I., Naumenko, O. V., Perrin, A. L., Polyansky, O. L.,
Raddaoui, E., Raston, P. L. J., Reed, Z. D., Rey, M., Richard, C.,
Tóbiás, R., Sadiek, I. A., Schwenke, D. W. G., Starikova, E.,
Sung, K., Tamassia, F., Tashkun, S. A., P, J. V. A., Vasilenko, I. A., and
Vigasin, A. A. Q.: The HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 277, 107949,
https://doi.org/10.1016/j.jqsrt.2021.107949, 2022. a, b, c, d, e, f
Kochanov, R. V., Gordon, I. E., Rothman, L. S., Wcisło, P., Hill, C., and
Wilzewski, J. S.: HITRAN Application Programming Interface (HAPI): a
comprehensive approach to working with spectroscopic data, J. Quant. Spectrosc. Ra., 177, 15–30,
https://doi.org/10.1016/j.jqsrt.2016.03.005, 2016. a
Lampel, J., Pöhler, D., Tschritter, J., Frieß, U., and Platt, U.: On the relative absorption strengths of water vapour in the blue wavelength range, Atmos. Meas. Tech., 8, 4329–4346, https://doi.org/10.5194/amt-8-4329-2015, 2015. a, b, c
Lampel, J., Pöhler, D., Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., Tennyson, J., Lodi, L., Frieß, U., Wang, Y., Beirle, S., Platt, U., and Wagner, T.: Detection of water vapour absorption around 363 nm in measured atmospheric absorption spectra and its effect on DOAS evaluations, Atmos. Chem. Phys., 17, 1271–1295, https://doi.org/10.5194/acp-17-1271-2017, 2017. a, b, c, d, e, f, g, h, i
Learner, R. C. M., Zhong, W., Haigh, J. D., Belmiloud, D., and Clarke, J.: The
contribution of unknown weak water vapor lines to the absorption of solar
radiation, Geophys. Res. Lett., 26, 3609–3612,
https://doi.org/10.1029/1999GL003681, 1999. a
Mota, R., Parafita, R., Giuliani, A., Hubin-Franskin, M.-J., Lourenço,
J., Garcia, G., Hoffmann, S., Mason, N., Ribeiro, P., Raposo, M., and
Limão-Vieira, P.: Water VUV electronic state spectroscopy by
synchrotron radiation, Chem. Phys. Lett., 416, 152–159,
https://doi.org/10.1016/j.cplett.2005.09.073, 2005. a
Orphal, J. and Chance, K.: Ultraviolet and visible absorption cross-sections
for HITRAN, J. Quant. Spectrosc. Ra., 82,
491–504, https://doi.org/10.1016/S0022-4073(03)00173-0, 2003. a, b
Pei, L., Min, Q., Du, Y., Wang, Z., Yin, B., Yang, K., Disterhoft, P.,
Pongetti, T., and Zhu, L.: Water Vapor Near‐UV Absorption: Laboratory
Spectrum, Field Evidence, and Atmospheric Impacts, J. Geophys. Res.-Atmos., 124, 14310–14324, https://doi.org/10.1029/2019JD030724,
2019. a, b, c, d, e, f, g, h, i, j, k, l
Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., Tennyson, J., Yurchenko,
S. N., and Lodi, L.: ExoMol molecular line lists XXX: a complete
high-accuracy line list for water, Mon. Not. R. Astron. Soc., 480, 2597–2608, https://doi.org/10.1093/mnras/sty1877, 2018. a
Ranjan, S., Schwieterman, E. W., Harman, C., Fateev, A., Sousa-Silva, C.,
Seager, S., and Hu, R.: Photochemistry of Anoxic Abiotic Habitable Planet
Atmospheres: Impact of New H2O Cross Sections, Astrophys. J.,
896, 148, https://doi.org/10.3847/1538-4357/ab9363, 2020. a
Rothman, L., Gordon, I., Barber, R., Dothe, H., Gamache, R., Goldman, A.,
Perevalov, V., Tashkun, S., and Tennyson, J.: HITEMP, the high-temperature
molecular spectroscopic database, J. Quant. Spectrosc. Ra., 111, 2139–2150, https://doi.org/10.1016/j.jqsrt.2010.05.001, 2010. a
Tennyson, J., Bernath, P. F., Brown, L. R., Campargue, A., Carleer, M. R.,
Császár, A. G., Gamache, R. R., Hodges, J. T., Jenouvrier, A.,
Naumenko, O. V., Polyansky, O. L., Rothman, L. S., Toth, R. A., Vandaele,
A. C., Zobov, N. F., Daumont, L., Fazliev, A. Z., Furtenbacher, T., Gordon,
I. E., Mikhailenko, S. N., and Shirin, S. V.: IUPAC critical evaluation of
the rotational–vibrational spectra of water vapor. Part I–Energy levels
and transition wavenumbers for H O and H O, J. Quant. Spectrosc. Ra., 110, 573–596,
https://doi.org/10.1016/j.jqsrt.2009.02.014, 2009.
a
Tennyson, J., Bernath, P. F., Brown, L. R., Campargue, A., Császár,
A. G., Daumont, L., Gamache, R. R., Hodges, J. T., Naumenko, O. V.,
Polyansky, O. L., Rothman, L. S., Vandaele, A. C., Zobov, N. F., Al Derzi,
A. R., Fábri, C., Fazliev, A. Z., Furtenbacher, T., Gordon, I. E.,
Lodi, L., and Mizus, I. I.: IUPAC critical evaluation of the
rotational–vibrational spectra of water vapor, Part III: Energy levels and
transition wavenumbers for H O, J. Quant. Spectrosc. Ra., 117, 29–58, https://doi.org/10.1016/j.jqsrt.2012.10.002, 2013. a, b
Tennyson, J., Yurchenko, S. N., Al-Refaie, A. F., Barton, E. J., Chubb, K. L.,
Coles, P. A., Diamantopoulou, S., Gorman, M. N., Hill, C., Lam, A. Z., Lodi,
L., McKemmish, L. K., Na, Y., Owens, A., Polyansky, O. L., Rivlin, T.,
Sousa-Silva, C., Underwood, D. S., Yachmenev, A., and Zak, E.: The ExoMol
database: Molecular line lists for exoplanet and other hot atmospheres,
J. Mol. Spectrosc., 327, 73–94,
https://doi.org/10.1016/j.jms.2016.05.002, 2016. a, b
Tolchenov, R. N., Naumenko, O., Zobov, N. F., Shirin, S. V., Polyansky, O. L.,
Tennyson, J., Carleer, M., Coheur, P.-F., Fally, S., Jenouvrier, A., and
Vandaele, A. C.: Water vapour line assignments in the 9250–26000 cm−1
frequency range, J. Mol. Spectrosc., 233, 68–76,
https://doi.org/10.1016/J.JMS.2005.05.015, 2005. a
Yin, B., Min, Q., Berndt, J., Harrison, L., and Zhu, L.: A High Resolution
Ultraviolet Spectroradiometer and its Application in Solar Radiation
Measurement, J. Geophys. Res.-Atmos., 126, 1–19,
https://doi.org/10.1029/2020JD032829, 2021. a, b, c, d
Short summary
Water vapor absorption in the near-UV region is essential to describe the energy budget of Earth; however, there is little spectroscopic information available. And accurate near-UV water absorption is also required in both ground-based observations and satellite missions for trace gas species. Here, we provide the high-resolution spectra of water vapor around 415 nm measured with cavity ring-down spectroscopy. These absorption lines have never been experimentally verified before.
Water vapor absorption in the near-UV region is essential to describe the energy budget of...