Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-5877-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5877-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Algorithm theoretical basis for ozone and sulfur dioxide retrievals from DSCOVR EPIC
Xinzhou Huang
Department of Atmospheric and Oceanic Sciences, University Maryland, College Park, MD 20742, USA
Department of Atmospheric and Oceanic Sciences, University Maryland, College Park, MD 20742, USA
Related authors
No articles found.
Juseon Bak, Arno Keppens, Daesung Choi, Sungjae Hong, Jae-Hwan Kim, Cheol-Hee Kim, Hyo-Jung Lee, Wonbae Jeon, Jhoon Kim, Ja-Ho Koo, Joowan Kim, Kanghyun Beak, Kai Yang, Xiong Liu, Gonzalo Gonzalez Abad, Klaus-Peter Heue, Jean-Christopher Lambert, Yeonjin Jung, Hyunkee Hong, and Won-Jin Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-2276, https://doi.org/10.5194/egusphere-2025-2276, 2025
Short summary
Short summary
This study presents the first complete description of the operational version 3 ozone profile retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS) and its performance characteristics. Improvements in radiometric and wavelength calibration reduce spectral fitting uncertainties and enhance agreement with ozonesonde profiles and Pandora total ozone measurements.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Juseon Bak, Xiong Liu, Robert Spurr, Kai Yang, Caroline R. Nowlan, Christopher Chan Miller, Gonzalo Gonzalez Abad, and Kelly Chance
Atmos. Meas. Tech., 14, 2659–2672, https://doi.org/10.5194/amt-14-2659-2021, https://doi.org/10.5194/amt-14-2659-2021, 2021
Short summary
Short summary
We apply a principal component analysis (PCA)-based approach combined with lookup tables (LUTs) of corrections to accelerate the VLIDORT radiative transfer (RT) model used in the retrieval of ozone profiles from backscattered ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI).
Cited articles
Ahmad, Z., Bhartia, P. K., and Krotkov, N. A.: Spectral properties of
backscattered UV radiation in cloudy atmospheres, J. Geophys. Res.-Atmos., 109, D01201, https://doi.org/10.1029/2003JD003395, 2004. a, b
Bak, J., Liu, X., Wei, J. C., Pan, L. L., Chance, K., and Kim, J. H.: Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology, Atmos. Meas. Tech., 6, 2239–2254, https://doi.org/10.5194/amt-6-2239-2013, 2013. a
Bak, J., Liu, X., Birk, M., Wagner, G., Gordon, I. E., and Chance, K.: Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals, Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020, 2020. a
Bhartia, P. K. and Wellemeyer, C. G.: TOMS-V8 Total O3 Algorithm, in: OMI
Algorithm Theoretical Basis Document, 2nd edn., vol. II, edited by: Bhartia, P. K.,
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA, 15–32,
https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf (last access: 1 October 2022),
2002. a, b, c, d, e
Birk, M. and Wagner, G.: ESA SEOM-IAS – Measurement and ACS database SO2 UV region (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.1492582, 2018. a, b
Birk, M. and Wagner, G.: ESA SEOM-IAS – Measurement and ACS database O3 UV
region (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.4423918, 2021. a, b
Blank, K.: EPIC Geolocation and Color Imagery Algorithm Revision 6, NASA
Goddard Space Flight Center, Greenbelt, Maryland, USA,
https://doi.org/10.5067/EPIC/DSCOVR/L1B.003, 2019. a
Blank, K., Huang, L.-K., Herman, J., and Marshak, A.: Earth Polychromatic Imaging Camera Geolocation; Strategies to Reduce Uncertainty,
Front. Remote Sens., 2, ISSN: 2673-6187, https://doi.org/10.3389/frsen.2021.715296, 2021.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.,
Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and
Burrows, J.: Measurements of molecular absorption spectra with the SCIAMACHY
pre-flight model: instrument characterization and reference data for
atmospheric remote-sensing in the 230–2380 nm region, J.
Photoch. Photobio. A, 157, 167–184,
https://doi.org/10.1016/S1010-6030(03)00062-5, 2003. a
Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R.,
Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle,
R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G.,
Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial Evaluation of the Climate, in: NASA Technical Report Series on
Global Modeling and Data Assimilation NASA/TM–2015-104606, vol. 43, edited by:
Koster, R. D., Goddard Space Flight Center, Greenbelt,
Maryland, USA, p. 139, https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf (last access: 1 October 2022), 2015. a
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
Objectives and Measurement Modes, J. Atmos. Sci., 56,
127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. a
Brennan, B. and Bandeen, W. R.: Anisotropic Reflectance Characteristics of
Natural Earth Surfaces, Appl. Optics, 9, 405, https://doi.org/10.1364/AO.9.000405,
1970. a
Brion, J., Chakir, A., Daumont, D., Malicet, J., and Parisse, C.:
High-resolution laboratory absorption cross section of O3. Temperature
effect, Chem. Phys. Lett., 213, 610–612,
https://doi.org/10.1016/0009-2614(93)89169-I, 1993. a
Brodzik, M. J. and Stewart, J. S.: Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA,
https://doi.org/10.5067/JAQDJKPX0S60, 2021.
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.:
GOME-2 – Metop's Second-Generation Sensor for Operational Ozone
Monitoring, ESA Bulletin,
http://www.esa.int/esapub/bulletin/bullet102/Callies102.pdf (last acccess: 1 October 2022),
2000. a
Caudill, T. R., Flittner, D. E., Herman, B. M., Torres, O., and McPeters,
R. D.: Evaluation of the pseudo-spherical approximation for backscattered
ultraviolet radiances and ozone retrieval, J. Geophys. Res.-Atmos., 102, 3881–3890, https://doi.org/10.1029/96JD03266, 1997. a, b
Cede, A., Kang Huang, L., McCauley, G., Herman, J., Blank, K., Kowalewski, M., and Marshak, A.: Raw EPIC Data Calibration, Front. Remote Sens., 2, 1–18, https://doi.org/10.3389/frsen.2021.702275, 2021.
Chance, K. V.: Spectroscopic Measurements of Tropospheric Composition from
Satellite Measurements in the Ultraviolet and Visible: Steps Toward
Continuous Pollution Monitoring from Space, in: Remote Sensing of the
Atmosphere for Environmental Security, edited by: Perrin, A., Ben Sari-Zizi,
N., and Demaison, J., Springer Netherlands, Dordrecht, 1–25, https://doi.org/10.1007/978-1-4020-5090-9_1, 2006. a
Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering,
including molecular parameters for rotational Raman scattering, and the
Fraunhofer spectrum, Appl. Optics, 36, 5224, https://doi.org/10.1364/AO.36.005224,
1997. a
Coulson, K. L. and Reynolds, D. W.: The Spectral Reflectance of Natural
Surfaces, J. Appl. Meteorol., 10, 1285–1295,
http://www.jstor.org/stable/26175651 (last access: 1 October 2022), 1971. a
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from
Photographs of the Sun's Glitter, J. Opt. Soc. Am., 44, 838–850,
https://doi.org/10.1364/JOSA.44.000838, 1954a. a
Cox, C. and Munk, W.: Statistics of the sea surface derived from Sun glitter,
J. Mar. Res., 13, 198–227, 1954b. a
Daumont, D., Brion, J., Charbonnier, J., and Malicet, J.: Ozone UV
spectroscopy I: Absorption cross-sections at room temperature, J. Atmos. Chem., 15, 145–155, https://doi.org/10.1007/BF00053756, 1992. a
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017. a
Deirmendjian, D.: Electromagnetic scattering on spherical polydispersions, American Elsevier Pub. Co., New York, ISBN: 0444000380,
https://www.rand.org/pubs/reports/R0456.html (last access: 1 October 2022), 1969. a
Doda, D. D. and Green, A. E. S.: Surface reflectance measurements in the UV
from an airborne platform Part 1, Appl. Optics, 19, 2140,
https://doi.org/10.1364/AO.19.002140, 1980. a
Doda, D. D. and Green, A. E. S.: Surface reflectance measurements in the
ultraviolet from an airborne platform – Part 2, Appl. Optics, 20, 636,
https://doi.org/10.1364/AO.20.000636, 1981. a
Eck, T. F., Bhartia, P. K., Hwang, P. H., and Stowe, L. L.: Reflectivity of
Earth's surface and clouds in ultraviolet from satellite observations,
J. Geophys. Res.-Atmos., 92, 4287, https://doi.org/10.1029/JD092iD04p04287,
1987. a
Edlén, B.: The Refractive Index of Air, Metrologia, 2, 71–80,
https://doi.org/10.1088/0026-1394/2/2/002, 1966. a
Eskes, H. J., van der A, R. J., Brinksma, E. J., Veefkind, J. P., de Haan, J. F., and Valks, P. J. M.: Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat, Atmos. Chem. Phys. Discuss., 5, 4429–4475, https://doi.org/10.5194/acpd-5-4429-2005, 2005. a
Feister, U. and Grewe, R.: Spectral albedo measurements in the UV and visible
region over different types of surfaces, Photochem. Photobiol.,
62, 736–744, https://doi.org/10.1111/j.1751-1097.1995.tb08723.x, 1995. a
Flynn, L. E., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I.,
McConville, G., Yu, W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C., Sen,
B., Novicki, M., Zhou, S., and Seftor, C. J.: Performance of the Ozone
Mapping and Profiler Suite (OMPS) products, J. Geophys. Res.-Atmos., 119, 6181–6195, https://doi.org/10.1002/2013JD020467, 2014. a
Flynn, L. E., Zhang, Z., Mikles, V., Das, B., Niu, J., Beck, T. C., and Beach,
E.: Algorithm Theoretical Basis Document for NOAA NDE OMPS Version 8 Total
Column Ozone (V8TOz) Environmental Data Record (EDR) Version`1.0, ATBD,
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_OMPS_TC_V8TOz_v1.1.pdf (last access: 1 October 2022),
2016. a
Fortuin, J. P. F. and Kelder, H.: An ozone climatology based on ozonesonde and
satellite measurements, J. Geophys. Res.-Atmos., 103,
31709–31734, https://doi.org/10.1029/1998JD200008, 1998. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis
for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a, b
Grainger, J. F. and Ring, J.: Anomalous Fraunhofer Line Profiles, Nature,
193, 762–762, https://doi.org/10.1038/193762a0, 1962. a
Herman, J., Huang, L., McPeters, R., Ziemke, J., Cede, A., and Blank, K.: Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth–sun Lagrange 1 orbit, Atmos. Meas. Tech., 11, 177–194, https://doi.org/10.5194/amt-11-177-2018, 2018. a, b, c
Herman, J. R. and Celarier, E. A.: Earth surface reflectivity climatology at
340–380 nm from TOMS data, J. Geophys. Res.-Atmos.,
102, 28003–28011, https://doi.org/10.1029/97JD02074, 1997. a
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier,
E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data,
J. Geophys. Res.-Atmos., 102, 16911–16922,
https://doi.org/10.1029/96JD03680, 1997. a
Joiner, J. and Bhartia, P. K.: Accurate determination of total ozone using
SBUV continuous spectral scan measurements, J. Geophys. Res.-Atmos., 102, 12957–12969, https://doi.org/10.1029/97JD00902, 1997. a
Joiner, J. and Vasilkov, A. P.: First results from the OMI rotational Raman
scattering cloud pressure algorithm, IEEE T. Geosci. Remote, 44, 1272–1282, https://doi.org/10.1109/TGRS.2005.861385, 2006. a
Joiner, J., Bhartia, P. K., Cebula, R. P., Hilsenrath, E., McPeters, R. D., and
Park, H.: Rotational Raman scattering (Ring effect) in satellite backscatter
ultraviolet measurements, Appl. Optics, 34, 4513,
https://doi.org/10.1364/AO.34.004513, 1995. a
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.:
Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the
Terra and Aqua Satellites, IEEE T. Geosci. Remote, 51, 3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013. a
Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth
surface reflectance climatology from 3 years of OMI data, J. Geophys. Res.-Atmos., 113, D18308, https://doi.org/10.1029/2008JD010290, 2008. a, b
Koelemeijer, R. B. A.: A database of spectral surface reflectivity in the
range 335–772 nm derived from 5.5 years of GOME observations, J. Geophys. Res.-Atmos., 108, 4070, https://doi.org/10.1029/2002JD002429, 2003. a
Koelemeijer, R. B. A. and Stammes, P.: Effects of clouds on ozone column
retrieval from GOME UV measurements, J. Geophys. Res.-Atmos., 104,
8281–8294, https://doi.org/10.1029/1999JD900012, 1999. a
Labow, G. J., Ziemke, J. R., McPeters, R. D., Haffner, D. P., and Bhartia,
P. K.: A total ozone-dependent ozone profile climatology based on
ozonesondes and Aura MLS data, J. Geophys. Res.-Atmos.,
120, 2537–2545, https://doi.org/10.1002/2014JD022634, 2015. a
Lamsal, L. N., Weber, M., Tellmann, S., and Burrows, J. P.: Ozone column
classified climatology of ozone and temperature profiles based on ozonesonde
and satellite data, J. Geophys. Res.-Atmos., 109,
D20304, https://doi.org/10.1029/2004JD004680, 2004. a
Landgraf, J., Hasekamp, O., van Deelen, R., and Aben, I.: Rotational Raman
scattering of polarized light in the Earth atmosphere: a vector radiative
transfer model using the radiative transfer perturbation theory approach,
J. Quant. Spectrosc. Ra., 87, 399–433,
https://doi.org/10.1016/j.jqsrt.2004.03.013, 2004. a
Lerot, C., Van Roozendael, M., Lambert, J.-C., Granville, J., van Gent, J.,
Loyola, D., and Spurr, R. J. D.: The GODFIT algorithm: a direct fitting
approach to improve the accuracy of total ozone measurements from GOME,
Int. J. Remote Sens., 31, 543–550,
https://doi.org/10.1080/01431160902893576, 2010. a
Lerot, C., Van Roozendael, M., Spurr, R. J. D., Loyola, D., Coldewey-Egbers,
M. R., Kochenova, S., Van Gent, J., Koukouli, M., Balis, D., Lambert,
J. C., Granville, J., and Zehner, C.: Homogenized total ozone data records
from the European sensors GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A,
J. Geophys. Res.-Atmos., 119, 1639–1662,
https://doi.org/10.1002/2013JD020831, 2014. a, b
Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J.,
Bhartia, P. K., Tamminen, J., de Haan, J. F., and Veefkind, J. P.: Science
objectives of the ozone monitoring instrument, IEEE T.
Geosci. Remote, 44, 1199–1208,
https://doi.org/10.1109/TGRS.2006.872336, 2006. a
Liu, G., Tarasick, D. W., Fioletov, V. E., Sioris, C. E., and Rochon, Y. J.:
Ozone correlation lengths and measurement uncertainties from analysis of
historical ozonesonde data in North America and Europe, J. Geophys. Res.-Atmos., 114, D04112, https://doi.org/10.1029/2008JD010576,
2009. a
Loyola, D. G., Koukouli, M. E., Valks, P., Balis, D. S., Hao, N., Van
Roozendael, M., Spurr, R. J. D., Zimmer, W., Kiemle, S., Lerot, C., and
Lambert, J.-C.: The GOME-2 total column ozone product: Retrieval algorithm
and ground-based validation, J. Geophys. Res.-Atmos., 116, D07302,
https://doi.org/10.1029/2010JD014675, 2011. a
Lucht, W., Schaaf, C., and Strahler, A.: An algorithm for the retrieval of
albedo from space using semiempirical BRDF models, IEEE T.
Geosci. Remote, 38, 977–998, https://doi.org/10.1109/36.841980, 2000. a
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., and Brion,
J.: Ozone UV spectroscopy. II. Absorption cross-sections and temperature
dependence, J. Atmos. Chem., 21, 263–273,
https://doi.org/10.1007/BF00696758, 1995. a
McPeters, R. D. and Labow, G. J.: Climatology 2011: An MLS and sonde derived
ozone climatology for satellite retrieval algorithms, J. Geophys. Res.-Atmos., 117, D10303, https://doi.org/10.1029/2011JD017006, 2012. a
McPeters, R. D., Labow, G. J., and Logan, J. A.: Ozone climatological profiles
for satellite retrieval algorithms, J. Geophys. Res.-Atmos., 112, D05308, https://doi.org/10.1029/2005JD006823, 2007. a, b, c
Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A., Livschitz, J., and Eisinger, M.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview, Atmos. Meas. Tech., 9, 1279–1301, https://doi.org/10.5194/amt-9-1279-2016, 2016. a
NASA/LARC/SD/ASDC: DSCOVR EPIC Level 2 O3SO2AI,
NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/EPIC/DSCOVR/L2_O3SO2AI.003, 2018. a
Platt, U.: Air Monitoring by Differential Optical Absorption Spectroscopy,
in: Encyclopedia of Analytical Chemistry, iii, John Wiley &
Sons, Ltd, Chichester, UK, 1–28, https://doi.org/10.1002/9780470027318.a0706.pub2, 2017. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, edited by: Taylor, F. W., World Scientific,
https://doi.org/10.1142/3171, 2000. a
Schaaf, C. B., Liu, J., Gao, F., and Strahler, A. H.: Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products, in: Land Remote Sensing and Global Environmental Change, edited by: Ramachandran, B., Justice, C., and Abrams, M., Remote Sensing and Digital Image Processing, Vol. 11, Springer, New York, NY, https://doi.org/10.1007/978-1-4419-6749-7_24, 2010. a
Sofieva, V. F., Tamminen, J., Kyrölä, E., Mielonen, T., Veefkind, P., Hassler, B., and Bodeker, G. E.: A novel tropopause-related climatology of ozone profiles, Atmos. Chem. Phys., 14, 283–299, https://doi.org/10.5194/acp-14-283-2014, 2014. a
Spurr, R. J.: VLIDORT: A linearized pseudo-spherical vector discrete ordinate
radiative transfer code for forward model and retrieval studies in multilayer
multiple scattering media, J. Quant. Spectrosc. Ra., 102, 316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005, 2006. a, b, c
Spurr, R. J. D., de Haan, J., van Oss, R., and Vasilkov, A. P.:
Discrete-ordinate radiative transfer in a stratified medium with first-order
rotational Raman scattering, J. Quant. Spectrosc. Ra., 109, 404–425, https://doi.org/10.1016/j.jqsrt.2007.08.011, 2008. a
Stajner, I., Wargan, K., Pawson, S., Hayashi, H., Chang, L.-P., Hudman, R. C.,
Froidevaux, L., Livesey, N., Levelt, P. F., Thompson, A. M., Tarasick, D. W.,
Stübi, R., Andersen, S. B., Yela, M., König-Langlo, G.,
Schmidlin, F. J., and Witte, J. C.: Assimilated ozone from EOS-Aura:
Evaluation of the tropopause region and tropospheric columns, J. Geophys. Res.-Atmos., 113, D16S32, https://doi.org/10.1029/2007JD008863, 2008. a
Tilstra, L. G., Tuinder, O. N. E., Wang, P., and Stammes, P.: Surface
reflectivity climatologies from UV to NIR determined from Earth observations
by GOME-2 and SCIAMACHY, J. Geophys. Res.-Atmos., 122,
4084–4111, https://doi.org/10.1002/2016JD025940, 2017. a, b, c
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of
backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.-Atmos., 103, 17099–17110,
https://doi.org/10.1029/98JD00900, 1998. a
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K.,
Veefkind, P., and Levelt, P.: Aerosols and surface UV products from Ozone
Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos., 112, D24S47, https://doi.org/10.1029/2007JD008809, 2007. a, b
Van Roozendael, M., Loyola, D., Spurr, R., Balis, D., Lambert, J.-C.,
Livschitz, Y., Valks, P., Ruppert, T., Kenter, P., Fayt, C., and Zehner, C.:
Ten years of GOME/ERS-2 total ozone data – The new GOME data processor (GDP)
version 4: 1. Algorithm description, J. Geophys. Res.-Atmos., 111,
D14311, https://doi.org/10.1029/2005JD006375, 2006. a
Van Roozendael, M., Spurr, R. J. D., Loyola, D., Lerot, C., Balis, D.,
Lambert, J. C., Zimmer, W., Van Gent, J., Van Geffen, J., Koukouli, M.,
Granville, J., Doicu, A., Fayt, C., and Zehner, C.: Sixteen years of
GOME/ERS-2 total ozone data: The new direct-fitting GOME Data Processor (GDP)
version 5 Algorithm description, J. Geophys. Res.-Atmos.,
117, D03305, https://doi.org/10.1029/2011JD016471, 2012. a
Vasilkov, A. P., Joiner, J., Spurr, R. J. D., Bhartia, P. K., Levelt, P., and
Stephens, G.: Evaluation of the OMI cloud pressures derived from rotational
Raman scattering by comparisons with other satellite data and radiative
transfer simulations, J. Geophys. Res.-Atmos., 113, D15,
https://doi.org/10.1029/2007JD008689, 2008. a
Veefkind, J., de Haan, J., Brinksma, E., Kroon, M., and Levelt, P.: Total
ozone from the ozone monitoring instrument (OMI) using the DOAS technique,
IEEE T. Geosci. Remote, 44, 1239–1244,
https://doi.org/10.1109/TGRS.2006.871204, 2006. a
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012. a
Vountas, M., Rozanov, V., and Burrows, J.: Ring Effect: Impact Of Rotational Raman Scattering On Radiative Transfer In Earth's Atmosphere, J.
Quant. Spectrosc. Ra., 60, 943–961,
https://doi.org/10.1016/S0022-4073(97)00186-6, 1998. a
Wagner, T., Beirle, S., Deutschmann, T., and Penning de Vries, M.: A sensitivity analysis of Ring effect to aerosol properties and comparison to satellite observations, Atmos. Meas. Tech., 3, 1723–1751, https://doi.org/10.5194/amt-3-1723-2010, 2010. a
Wargan, K., Pawson, S., Olsen, M. A., Witte, J. C., Douglass, A. R., Ziemke,
J. R., Strahan, S. E., and Nielsen, J. E.: The global structure of upper
troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of
EOS Aura data, J. Geophys. Res.-Atmos., 120,
2013–2036, https://doi.org/10.1002/2014JD022493, 2015. a
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., and Partyka, G.:
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis, J.
Climate, 30, 2961–2988, https://doi.org/10.1175/JCLI-D-16-0699.1, 2017. a
Wassmann, A., Borsdorff, T., aan de Brugh, J. M. J., Hasekamp, O. P., Aben, I., and Landgraf, J.: The direct fitting approach for total ozone column retrievals: a sensitivity study on GOME-2/MetOp-A measurements, Atmos. Meas. Tech., 8, 4429–4451, https://doi.org/10.5194/amt-8-4429-2015, 2015. a
Wei, J. C., Pan, L. L., Maddy, E., Pittman, J. V., Divarkarla, M., Xiong, X.,
and Barnet, C.: Ozone profile retrieval from an advanced infrared sounder:
experiments with tropopause-based climatology and optimal estimation
approach, J. Atmos. Ocean. Tech., 27, 1123–1139,
https://doi.org/10.1175/2010JTECHA1384.1, 2010. a
Wellemeyer, C. G., Taylor, S. L., Seftor, C. J., Mcpeters, R. D., and Bhartia,
P. K.: A correction for total ozone mapping spectrometer profile shape
errors at high latitude, J. Geophys. Res.-Atmos., 102, 9029,
https://doi.org/10.1029/96JD03965, 1997. a, b
Yang, K., Fleig, A., Wolfe, R., and Nishihama, M.: MODIS band-to-band
registration, in: IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), IEEE 2, Honolulu, HI, USA, 24–28 July 2000,
887–889, https://doi.org/10.1109/IGARSS.2000.861735, 2000. a
Yang, K., Bhartia, P. K., Wellemeyer, C. G., Qin, W., Spurr, R. J. D.,
Veefkind, J. P., and de Haan, J. F.: Application of spectral fitting method
to GOME and comparison with OMI‐DOAS and TOMS‐V8 total ozone, in:
Proceedings of the XX Quadrennial Ozone Symposium, edited by Zerefos, C. S., International Ozone
Commission, 1–8 June 2004, Kos,
Greece, 510–511,
https://www.researchgate.net/publication/354387548_Application_of_Spectral_Fitting_Method_to_GOME_and_Comparison_With_OMI_DOAS_and_TOMS-V8_Total_Ozone (last access: 1 October 2022),
2004. a
Yang, K., Krotkov, N. A., Krueger, A. J., Carn, S. A., Bhartia, P. K., and
Levelt, P. F.: Retrieval of large volcanic SO2 columns from the Aura
Ozone Monitoring Instrument: Comparison and limitations, J. Geophys. Res.-Atmos., 112, D24S43, https://doi.org/10.1029/2007JD008825,
2007. a
Yang, K., Krotkov, N. A., Krueger, A. J., Carn, S. A., Bhartia, P. K., and
Levelt, P. F.: Improving retrieval of volcanic sulfur dioxide from
backscattered UV satellite observations, Geophys. Res. Lett., 36,
L03102–L03102, https://doi.org/10.1029/2008GL036036, 2009a. a
Yang, K., Liu, X., Krotkov, N. a., Krueger, A. J., and Carn, S. a.: Estimating
the altitude of volcanic sulfur dioxide plumes from space borne
hyper-spectral UV measurements, Geophys. Res. Lett., 36,
L10803–L10803, https://doi.org/10.1029/2009GL038025, 2009b. a, b
Yang, K., Liu, X., Bhartia, P. K., Krotkov, N. A., Carn, S. A., Hughes, E. J.,
Krueger, A. J., Spurr, R. J. D., and Trahan, S. G.: Direct retrieval of
sulfur dioxide amount and altitude from spaceborne hyperspectral UV
measurements: Theory and application, J. Geophys. Res.-Atmos., 115,
D00L09, https://doi.org/10.1029/2010JD013982, 2010. a, b, c, d
Yang, K., Dickerson, R. R., Carn, S. A., Ge, C., and Wang, J.: First
observations of SO2 from the satellite Suomi NPP OMPS: Widespread air
pollution events over China, Geophys. Res. Lett., 40, 4957–4962,
https://doi.org/10.1002/grl.50952, 2013. a
Yang, K., Carn, S. a., Ge, C., Wang, J., and Dickerson, R. R.: Advancing
Measurements of Tropospheric NO2 from Space: New Algorithm and First
Global Results from OMPS, Geophys. Res. Lett., 41, 4777–4786,
https://doi.org/10.1002/2014GL060136, 2014.
a
Yang, Y., Meyer, K., Wind, G., Zhou, Y., Marshak, A., Platnick, S., Min, Q., Davis, A. B., Joiner, J., Vasilkov, A., Duda, D., and Su, W.: Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, 2019. a
Short summary
This paper describes the algorithm for O3 and SO2 retrievals from DSCOVR EPIC. Algorithm advances, including the improved O3 profile representation and the regulated direct fitting inversion technique, improve the accuracy of O3 and SO2 from the multi-channel measurements of DSCOVR EPIC. A thorough error analysis is provided to quantify O3 and SO2 retrieval uncertainties due to various error sources and simplified algorithm physics treatments.
This paper describes the algorithm for O3 and SO2 retrievals from DSCOVR EPIC. Algorithm...