Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-5985-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5985-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Andrew T. Prata
CORRESPONDING AUTHOR
Sub-Department of Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Roy G. Grainger
Sub-Department of Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Isabelle A. Taylor
COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK
Adam C. Povey
National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK
Simon R. Proud
National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK
RAL Space, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
Caroline A. Poulsen
Science and Innovation Group, Australian Bureau of Meteorology, Melbourne, Australia
Related authors
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209, https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Short summary
Southern Ocean (SO) clouds are crucial in defining the Earth’s radiation budget. They are primarily observed by satellites, due to a lack of surface observations. This study validated cloud top height and cloud mask and compared the microphysics products from 3 satellite cloud datasets over the SO. The study revealed significant differences in cloud property retrievals between the sensors. Multilayer clouds play a major role in the differences when validated with active satellite measurements.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Moch Syarif Romadhon, Daniel Peters, and Roy Gordon Grainger
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-140, https://doi.org/10.5194/amt-2023-140, 2023
Publication in AMT not foreseen
Short summary
Short summary
The role of atmospheric aerosols on the Earth's climate and air quality is difficult to be determined quantitatively due to the drawback of available instruments. A widely used instrument to study the role is Optical Particle Counter (OPC). However, an assumption of particle refractive index is needed by OPCs to estimate particle size. This paper discusses SPARCLE 2: a new OPC that does not require such assumption. It was validated using standard particles and used to measure ambient air.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Cited articles
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H.: The quickhull algorithm for
convex hulls, ACM Trans. Mathe. Softw., 22, 469–483,
https://doi.org/10.1145/235815.235821, 1996. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y.,
Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to
Himawari-8/9 Japan's New-Generation Geostationary
Meteorological Satellites, J. Meteorol. Soc.
JPN Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bruckert, J., Hoshyaripour, G. A., Horváth, Á., Muser, L. O.,
Prata, F. J., Hoose, C., and Vogel, B.: Online treatment of eruption
dynamics improves the volcanic ash and SO2 dispersion forecast: case
of the 2019 Raikoke eruption, Atmos. Chem. Phys., 22, 3535–3552,
https://doi.org/10.5194/acp-22-3535-2022, 2022. a
Bursik, M. I., Sparks, R. S. J., Gilbert, J. S., and Carey, S. N.:
Sedimentation of tephra by volcanic plumes: I. Theory and its comparison
with a study of the Fogo A plinian deposit, Sao Miguel (Azores),
Bull. Volcanol., 54, 329–344, https://doi.org/10.1007/BF00301486, 1992. a, b
Clarisse, L., Hurtmans, D., Prata, A. J., Karagulian, F., Clerbaux, C.,
De Maziére, M., and Coheur, P.-F.: Retrieving radius, concentration, optical
depth, and mass of different types of aerosols from high-resolution infrared
nadir spectra, Appl. Opt., 49, 3713, https://doi.org/10.1364/AO.49.003713, 2010. a
Cooper, S. J., L'Ecuyer, T. S., Gabriel, P., Baran, A. J., and Stephens,
G. L.: Objective Assessment of the Information Content of Visible and
Infrared Radiance Measurements for Cloud Microphysical Property
Retrievals over the Global Oceans. Part II: Ice Clouds, J. Appl. Meteorol. Climatol., 45, 42–62, https://doi.org/10.1175/JAM2327.1,
2006. a
Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M.,
Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash retrieval and
sensitivity analysis using moderate resolution imaging spectroradiometer
measurements, J. Appl. Remote Sens., 2, 023550,
https://doi.org/10.1117/1.3046674, 2008. a, b, c, d, e
Corradini, S., Montopoli, M., Guerrieri, L., Ricci, M., Scollo, S., Merucci,
L., Marzano, F., Pugnaghi, S., Prestifilippo, M., Ventress, L., Grainger, R.,
Carboni, E., Vulpiani, G., and Coltelli, M.: A Multi-Sensor Approach
for Volcanic Ash Cloud Retrieval and Eruption Characterization:
The 23 November 2013 Etna Lava Fountain, Remote Sens., 8, 58,
https://doi.org/10.3390/rs8010058, 2016. a
Dacre, H. F., Grant, A. L. M., and Johnson, B. T.: Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud, Atmos. Chem. Phys., 13, 1277–1291, https://doi.org/10.5194/acp-13-1277-2013, 2013. a
de Leeuw, J., Schmidt, A., Witham, C. S., Theys, N., Taylor, I. A., Grainger, R. G., Pope, R. J., Haywood, J., Osborne, M., and Kristiansen, N. I.: The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide, Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, 2021. a
Deguine, A., Petitprez, D., Clarisse, L., Gudmundsson, S., Outes, V.,
Villarosa, G., and Herbin, H.: Complex refractive index of volcanic ash
aerosol in the infrared, visible, and ultraviolet, Appl. Opt., 59, 884,
https://doi.org/10.1364/AO.59.000884, 2020. a
Dioguardi, F., Beckett, F., Dürig, T., and Stevenson, J. A.: The Impact of
Eruption Source Parameter Uncertainties on Ash Dispersion
Forecasts During Explosive Volcanic Eruptions, J.
Geophys. Res.-Atmos., 125, e2020JD032717, https://doi.org/10.1029/2020JD032717, 2020. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a
Folch, A., Mingari, L., and Prata, A. T.: Ensemble-Based Forecast of
Volcanic Clouds Using FALL3D-8.1, Front. Earth Sci., 9,
741841, https://doi.org/10.3389/feart.2021.741841, 2022. a
Gouhier, M., Eychenne, J., Azzaoui, N., Guillin, A., Deslandes, M., Poret, M.,
Costa, A., and Husson, P.: Low efficiency of large volcanic eruptions in
transporting very fine ash into the atmosphere, Sci. Rep., 9, 1449,
https://doi.org/10.1038/s41598-019-38595-7, 2019. a, b
Grainger, R. G., Peters, D. M., Thomas, G. E., Smith, A. J. A., Siddans, R.,
Carboni, E., and Dudhia, A.: Measuring volcanic plume and ash properties from
space, Geological Society, London, Special Pub., 380, 293–320,
https://doi.org/10.1144/SP380.7, 2013. a
Gray, T. M. and Bennartz, R.: Automatic volcanic ash detection from MODIS observations using a back-propagation neural network, Atmos. Meas. Tech., 8, 5089–5097, https://doi.org/10.5194/amt-8-5089-2015, 2015. a
Gu, Y., Rose, W. I., and Bluth, G. J. S.: Retrieval of mass and sizes of
particles in sandstorms using two MODIS IR bands: A case study of
April 7, 2001 sandstorm in China, Geophys. Res. Lett., 30, 1805,
https://doi.org/10.1029/2003GL017405, 2003. a
Gu, Y., Rose, W. I., Schneider, D. J., Bluth, G. J. S., and Watson, I. M.:
Advantageous GOES IR results for ash mapping at high latitudes:
Cleveland eruptions 2001, Geophys. Res. Lett., 32, L02305,
https://doi.org/10.1029/2004GL021651, 2005. a
Harvey, N. J., Dacre, H. F., Webster, H. N., Taylor, I. A., Khanal, S.,
Grainger, R. G., and Cooke, M. C.: The Impact of Ensemble Meteorology
on Inverse Modeling Estimates of Volcano Emissions and Ash
Dispersion Forecasts: Grímsvötn 2011, Atmosphere, 11, 1022,
https://doi.org/10.3390/atmos11101022, 2020. a
Harvey, N. J., Dacre, H. F., Saint, C., Prata, A. T., Webster, H. N., and Grainger, R. G.: Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption, Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, 2022. a, b
Heidinger, A. K., Pavolonis, M. J., Holz, R. E., Baum, B. A., and Berthier, S.:
Using CALIPSO to explore the sensitivity to cirrus height in the infrared
observations from NPOESS/VIIRS and GOES-R/ABI, J.
Geophys. Res., 115, D00H20, https://doi.org/10.1029/2009JD012152, 2010. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Horváth, Á., Carr, J. L., Girina, O. A., Wu, D. L., Bril, A. A., Mazurov, A. A., Melnikov, D. V., Hoshyaripour, G. A., and Buehler, S. A.: Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology, Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, 2021a. a, b
Horváth, Á., Girina, O. A., Carr, J. L., Wu, D. L., Bril, A. A., Mazurov, A. A., Melnikov, D. V., Hoshyaripour, G. A., and Buehler, S. A.: Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 2: Case studies, Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, 2021b. a, b, c, d, e, f
Hyman, D. M. and Pavolonis, M. J.: Probabilistic retrieval of volcanic SO2
layer height and cumulative mass loading using the Cross-track Infrared
Sounder (CrIS), https://doi.org/10.5194/amt-2020-41, 2020. a
ICAO: Roadmap for International Airways Volcano Watch (IAVW) in
Support of International Air Navigation, https://www.icao.int/airnavigation/METP/ MOGVA ReferenceDocuments/IAVW Roadmap.pdf (last access: 29 November
2021), 2019. a
Inoue, T.: On the Temperature and Effective Emissivity Determination of
Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in
the 10 – Window Region, J. Meteorol. Soc. JPN,
Ser. II, 63, 88–99, https://doi.org/10.2151/jmsj1965.63.1_88, 1985. a
Iwabuchi, H. and Hayasaka, T.: Effects of Cloud Horizontal Inhomogeneity
on the Optical Thickness Retrieved from Moderate-Resolution
Satellite Data, J. Atmos. Sci., 59, 2227–2242,
https://doi.org/10.1175/1520-0469(2002)059<2227:EOCHIO>2.0.CO;2, 2002. a
Key, J. R.: Retrieval of cloud optical depth and particle effective radius at
high latitudes using visible and thermal satellite data, p. 318, Paris,
France, https://doi.org/10.1117/12.228928, 1995. a
Kylling, A., Kahnert, M., Lindqvist, H., and Nousiainen, T.: Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles, Atmos. Meas. Tech., 7, 919–929, https://doi.org/10.5194/amt-7-919-2014, 2014. a, b, c, d
Kylling, A., Kristiansen, N., Stohl, A., Buras-Schnell, R., Emde, C., and Gasteiger, J.: A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash, Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, 2015. a, b, c
Levenberg, K.: A method for the solution of certain non-linear problems in
least squares, Q. Appl. Mathe., 2, 164–168,
https://doi.org/10.1090/qam/10666, 1944. a
Lindsey, D., Schmit, T. J., MacKenzie, W. M., Jewitt, C. P., Gunshor, M. M.,
and Grasso, L.: 10.35: atmospheric window on the GOES-R Advanced
Baseline Imager with less moisture attenuation, J. Appl. Remote
Sens., 6, 1, https://doi.org/10.1117/1.JRS.6.063598, 2012. a
Lu, S., Lin, H. X., Heemink, A., Segers, A., and Fu, G.: Estimation of volcanic
ash emissions through assimilating satellite data and ground-based
observations, J. Geophys. Res.-Atmos., 121,
10971–10994, https://doi.org/10.1002/2016JD025131, 2016. a
Mackie, S., Millington, S., and Watson, I. M.: How assumed composition affects
the interpretation of satellite observations of volcanic ash: How assumed
composition affects interpretation of ash observations, Meteorol.
Appl., 21, 20–29, https://doi.org/10.1002/met.1445, 2014. a
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of
Nonlinear Parameters, J. Soc. Indust. Appl.
Mathe., 11, 431–441, https://doi.org/10.1137/0111030, 1963. a
Mastin, L., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K.,
Durant, A., Ewert, J., Neri, A., Rose, W., Schneider, D., Siebert, L.,
Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C.: A
multidisciplinary effort to assign realistic source parameters to models of
volcanic ash-cloud transport and dispersion during eruptions, J.
Volcanol. Geothermal Res., 186, 10–21,
https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009. a, b, c, d, e, f, g, h, i, j, k, l
McGarragh, G. R., Thomas, G. E., Povey, A. C., Poulsen, C. A., and Grainger,
R. G.: Volcanic ash retrievals using ORAC and satellite measurements in the
visible and IR, Proc. ˜ATMOS 2015, Advances in Atmospheric Science and
Applications, Heraklion, Greece, 8–12 June 2015 (ESA SP-735, November
2015), p. 8, 2015. a
McGarragh, G. R., Poulsen, C. A., Thomas, G. E., Povey, A. C., Sus, O., Stapelberg, S., Schlundt, C., Proud, S., Christensen, M. W., Stengel, M., Hollmann, R., and Grainger, R. G.: The Community Cloud retrieval for CLimate (CC4CL) – Part 2: The optimal estimation approach, Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018, 2018. a, b, c, d, e, f, g
McKee, K., Smith, C. M., Reath, K., Snee, E., Maher, S., Matoza, R. S., Carn,
S., Mastin, L., Anderson, K., Damby, D., Roman, D. C., Degterev, A., Rybin,
A., Chibisova, M., Assink, J. D., de Negri Leiva, R., and Perttu, A.:
Evaluating the state-of-the-art in remote volcanic eruption characterization
Part I: Raikoke volcano, Kuril Islands, J. Volcanol.
Geotherm. Res., 419, 107354, https://doi.org/10.1016/j.jvolgeores.2021.107354,
2021. a, b, c, d, e, f, g, h
Mingari, L., Folch, A., Prata, A. T., Pardini, F., Macedonio, G., and Costa, A.: Data assimilation of volcanic aerosol observations using FALL3D+PDAF, Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, 2022. a, b
Morton, B. R., Taylor, G. T., and Turner, J. S.: Turbulent gravitational
convection from maintained and instantaneous sources, P.
Roy. Soc. London Series A, 234,
1–23, https://doi.org/10.1098/rspa.1956.0011, 1956. a, b
Muser, L. O., Hoshyaripour, G. A., Bruckert, J., Horváth, Á., Malinina, E., Wallis, S., Prata, F. J., Rozanov, A., von Savigny, C., Vogel, H., and Vogel, B.: Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019 eruption, Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, 2020. a, b, c
Newman, S. M., Clarisse, L., Hurtmans, D., Marenco, F., Johnson, B., Turnbull,
K., Havemann, S., Baran, A. J., and Haywood, J.: A case study of observations
of volcanic ash from the Eyjafjallajókull eruption: 2. Airborne and
satellite radiative measurements, p. 19, https://doi.org/10.1029/2011JD016780, 2012. a
Osborne, M. J., de Leeuw, J., Witham, C., Schmidt, A., Beckett, F., Kristiansen, N., Buxmann, J., Saint, C., Welton, E. J., Fochesatto, J., Gomes, A. R., Bundke, U., Petzold, A., Marenco, F., and Haywood, J.: The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions, Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, 2022. a, b, c, d, e, f
Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri,
A., Stelitano, D., and de Michieli Vitturi, M.: Ensemble-Based Data
Assimilation of Volcanic Ash Clouds from Satellite Observations:
Application to the 24 December 2018 Mt. Etna Explosive Eruption,
Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359, 2020. a
Parol, F., Buriez, J. C., Brogniez, G., and Fouquart, Y.: Information Content
of AVHRR Channels 4 and 5 with Respect to the Effective Radius of
Cirrus Cloud Particles, J. Appl. Meteorol., 30, 973–984,
https://doi.org/10.1175/1520-0450-30.7.973, 1991. a
Pavolonis, M. and Sieglaff, J.: GOES-R Advanced Baseline Imager
(ABI) Algorithm Theoretical Basis Document For Volcanic Ash
(Detection and Height), p. 71, https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_VolAsh_v3.0_July2012.pdf (last access: 17 October 2022), 2012. a
Pavolonis, M. J., Heidinger, A. K., and Sieglaff, J.: Automated retrievals of
volcanic ash and dust cloud properties from upwelling infrared measurements:
Retrieval of ash/dust cloud properties, J. Geophys. Res.-Atmos., 118, 1436–1458, https://doi.org/10.1002/jgrd.50173, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m
Pavolonis, M. J., Sieglaff, J., and Cintineo, J.: Spectrally Enhanced Cloud
Objects - A generalized framework for automated detection of volcanic ash
and dust clouds using passive satellite measurements: 2. Cloud object
analysis and global application, J. Geophys. Res.-Atmos., 120, 7842–7870, https://doi.org/10.1002/2014JD022969, 2015a. a
Pavolonis, M. J., Sieglaff, J., and Cintineo, J.: Spectrally Enhanced Cloud
Objects-A generalized framework for automated detection of volcanic ash
and dust clouds using passive satellite measurements: 1. Multispectral
analysis, J. Geophys. Res.-Atmos., 120, 7813–7841,
https://doi.org/10.1002/2014JD022968, 2015b. a
Pavolonis, M. J., Sieglaff, J. M., and Cintineo, J. L.: Remote Sensing of
Volcanic Ash with the GOES-R Series, in: The GOES-R Series,
103–124, Elsevier, https://doi.org/10.1016/B978-0-12-814327-8.00010-X, 2020. a
Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F., and Stramondo, S.: Volcanic ash detection and retrievals using MODIS data by means of neural networks, Atmos. Meas. Tech., 4, 2619–2631, https://doi.org/10.5194/amt-4-2619-2011, 2011. a
Piontek, D., Bugliaro, L., Kar, J., Schumann, U., Marenco, F., Plu, M., and
Voigt, C.: The New Volcanic Ash Satellite Retrieval VACOS Using
MSG/SEVIRI and Artificial Neural Networks: 2. Validation, Remote
Sens., 13, 3128, https://doi.org/10.3390/rs13163128, 2021a. a
Piontek, D., Hornby, A., Voigt, C., Bugliaro, L., and Gasteiger, J.:
Determination of complex refractive indices and optical properties of
volcanic ashes in the thermal infrared based on generic petrological
compositions, J. Volcanol. Geotherm. Res., 411, 107174,
https://doi.org/10.1016/j.jvolgeores.2021.107174, 2021b. a
Pouget, S., Bursik, M., Webley, P., Dehn, J., and Pavolonis, M.: Estimation of
eruption source parameters from umbrella cloud or downwind plume growth rate,
J. Volcanol. Geotherm. Res., 258, 100–112,
https://doi.org/10.1016/j.jvolgeores.2013.04.002, 2013. a
Poulsen, C. A., Siddans, R., Thomas, G. E., Sayer, A. M., Grainger, R. G., Campmany, E., Dean, S. M., Arnold, C., and Watts, P. D.: Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR, Atmos. Meas. Tech., 5, 1889–1910, https://doi.org/10.5194/amt-5-1889-2012, 2012. a, b, c, d, e, f
Prabhakara, C., Fraser, R. S., Dalu, G., Wu, M.-L. C., Curran, R. J., and
Styles, T.: Thin Cirrus Clouds: Seasonal Distribution over Oceans
Deduced from Nimbus-4 IRIS, J. Appl. Meteorol., 27,
379–399, https://doi.org/10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2, 1988. a
Prata, A. J.: Infrared radiative transfer calculations for volcanic ash clouds,
Geophys. Res. Lett., 16, 1293–1296, https://doi.org/10.1029/GL016i011p01293,
1989a. a, b, c
Prata, A. J.: Observations of volcanic ash clouds in the 10–12 µm window using
AVHRR/2 data, Int. J. Remote Sens., 10, 751–761,
https://doi.org/10.1080/01431168908903916, 1989b. a
Prata, A. T., Siems, S. T., and Manton, M. J.: Quantification of volcanic cloud
top heights and thicknesses using A-train observations for the 2008
Chaitén eruption, J. Geophys. Res.-Atmos., 120,
2928–2950, https://doi.org/10.1002/2014JD022399, 2015. a
Prata, A. T., Young, S. A., Siems, S. T., and Manton, M. J.: Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements, Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, 2017a. a, b
Prata, A. T., Folch, A., Prata, A. J., Biondi, R., Brenot, H., Cimarelli, C.,
Corradini, S., Lapierre, J., and Costa, A.: Anak Krakatau triggers volcanic
freezer in the upper troposphere, Sci. Rep., 10,
https://doi.org/10.1038/s41598-020-60465-w, 2020. a
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation, Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, 2021. a, b, c, d
Prata, F., Woodhouse, M., Huppert, H. E., Prata, A., Thordarson, T., and Carn, S.: Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption, Atmos. Chem. Phys., 17, 10709–10732, https://doi.org/10.5194/acp-17-10709-2017, 2017b. a, b
Prata, G. S., Ventress, L. J., Carboni, E., Mather, T. A., Grainger, R. G., and
Pyle, D. M.: A New Parameterization of Volcanic Ash Complex
Refractive Index Based on NBO/T and SiO 2
Content, J. Geophys. Res.-Atmos., 124, 1779–1797,
https://doi.org/10.1029/2018JD028679, 2019. a, b, c
Reed, B. E., Peters, D. M., McPheat, R., and Grainger, R. G.: The Complex
Refractive Index of Volcanic Ash Aerosol Retrieved From
Spectral Mass Extinction, J. Geophys. Res.-Atmos.,
123, 1339–1350, https://doi.org/10.1002/2017JD027362, 2018. a, b
Rodgers, C. D.: Retrieval of atmospheric temperature and composition from
remote measurements of thermal radiation, Rev. Geophys., 14, 609,
https://doi.org/10.1029/RG014i004p00609, 1976. a
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018. a
Schneider, D. J., Rose, W. I., Coke, L. R., Bluth, G. J. S., Sprod, I. E., and
Krueger, A. J.: Early evolution of a stratospheric volcanic eruption cloud as
observed with TOMS and AVHRR, J. Geophys. Res.-Atmos., 104, 4037–4050, https://doi.org/10.1029/1998JD200073, 1999. a
Sears, T. M., Thomas, G. E., Carboni, E., A. Smith, A. J., and Grainger, R. G.:
SO 2 as a possible proxy for volcanic ash in aviation hazard
avoidance, J. Geophys. Res.-Atmos., 118, 5698–5709,
https://doi.org/10.1002/jgrd.50505, 2013. a
Settle, M.: Volcanic eruption clouds and the thermal power output of explosive
eruptions, J. Volcanol. Geotherm. Res., 3, 309–324,
https://doi.org/10.1016/0377-0273(78)90041-0, 1978. a
Smirnov, S., Nizametdinov, I., Timina, T., Kotov, A., Sekisova, V., Kuzmin, D.,
Kalacheva, E., Rashidov, V., Rybin, A., Lavrenchuk, A., Degterev, A.,
Maksimovich, I., and Abersteiner, A.: High explosivity of the June 21, 2019
eruption of Raikoke volcano (Central Kuril Islands); mineralogical
and petrological constraints on the pyroclastic materials, J.
Volcanol. Geotherm. Res., 418, 107346,
https://doi.org/10.1016/j.jvolgeores.2021.107346, 2021. a, b
Soda, R.: Infrared Absorption Spectra of Quartz and Some other Silica
Modification, B. Chem. Soc. JPN, 34, 1491–1495,
https://doi.org/10.1246/bcsj.34.1491, 1961. a
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Laszlo, I.: DISORT, a
general-purpose Fortran program for discrete-ordinate-method radiative
transfer in scattering and emitting layered media: documentation of
methodology, Tech. rep., Dept. of Physics and Engineering Physics, Stevens
Institute of Technology Hoboken, NJ 07030, 112 pp., http://www.libradtran.org/lib/exe/fetch.php?media=disortreport1.1.pdf (last access: 17 October 2022), 2000. a
Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N. I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Tørseth, K., and Weinzierl, B.: Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, 4333–4351, https://doi.org/10.5194/acp-11-4333-2011, 2011. a
Thomas, G. E., Poulsen, C. A., Sayer, A. M., Marsh, S. H., Dean, S. M., Carboni, E., Siddans, R., Grainger, R. G., and Lawrence, B. N.: The GRAPE aerosol retrieval algorithm, Atmos. Meas. Tech., 2, 679–701, https://doi.org/10.5194/amt-2-679-2009, 2009. a, b
Van Eaton, A. R., Amigo, Ã., Bertin, D., Mastin, L. G., Giacosa, R. E.,
González, J., Valderrama, O., Fontijn, K., and Behnke, S. A.: Volcanic
lightning and plume behavior reveal evolving hazards during the April 2015
eruption of Calbuco volcano, Chile, Geophys. Res. Lett., 43,
3563–3571, https://doi.org/10.1002/2016GL068076, 2016. a
Vicente, G. A., Davenport, J. C., and Scofield, R. A.: The role of orographic
and parallax corrections on real time high resolution satellite rainfall rate
distribution, Int. J. Remote Sens., 23, 221–230,
https://doi.org/10.1080/01431160010006935, 2002. a
Wang, C., Yang, P., Baum, B. A., Platnick, S., Heidinger, A. K., Hu, Y., and
Holz, R. E.: Retrieval of Ice Cloud Optical Thickness and Effective
Particle Size Using a Fast Infrared Radiative Transfer Model,
J. Appl. Meteorol. Climatol., 50, 2283–2297,
https://doi.org/10.1175/JAMC-D-11-067.1, 2011. a
Watts, P. D., Bennartz, R., and Fell, F.: Retrieval of two-layer cloud
properties from multispectral observations using optimal estimation, J. Geophys. Res., 116, D16203, https://doi.org/10.1029/2011JD015883, 2011. a
Western, L. M., Watson, M. I., and Francis, P. N.: Uncertainty in two-channel
infrared remote sensing retrievals of a well-characterised volcanic ash
cloud, B. Volcanol., 77, 67, https://doi.org/10.1007/s00445-015-0950-y, 2015. a
Wilkins, K. L., Mackie, S., Watson, M., Webster, H. N., Thomson, D. J., and
Dacre, H. F.: Data insertion in volcanic ash cloud forecasting, Ann.
Geophys., 57, 1–6, https://doi.org/10.4401/ag-6624, 2015. a
Wilkins, K. L., Watson, I. M., Kristiansen, N. I., Webster, H. N., Thomson,
D. J., Dacre, H. F., and Prata, A. J.: Using data insertion with the NAME
model to simulate the 8 May 2010 Eyjafjallajókull volcanic ash cloud,
J. Geophys. Res.-Atmos., 121, 306–323,
https://doi.org/10.1002/2015JD023895, 2016. a, b
Wilson, L., Sparks, R. S. J., Huang, T. C., and Watkins, N. D.: The control of
volcanic column heights by eruption energetics and dynamics, J.
Geophys. Res.-Solid Earth, 83, 1829–1836,
https://doi.org/10.1029/JB083iB04p01829, 1978. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean.
Technol., 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Winker, D. M., Liu, Z., Omar, A., Tackett, J., and Fairlie, D.: CALIOP
observations of the transport of ash from the Eyjafjallajókull volcano in
April 2010, J. Geophys. Res.-Atmos., 117, D00U15,
https://doi.org/10.1029/2011JD016499, 2012. a
Witham, C., Hort, M., Thomson, D., Devenish, B., Webster, H., and Beckett, F.:
The current volcanic ash modelling set- up at the London VAAC, p. 11,
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/services/transport/aviation/vaac/london_vaac_current_modelling_setup.pdf (last access: 17 October 2022), 2019.
a
Yamanouchi, T., Suzuki, K., and Kawaguchi, S.: Detection of Clouds in
Antarctica from Infrared Multispectral Data of AVHRR, J.
Meteorol. Soc. JPN Ser. II, 65, 949–962,
https://doi.org/10.2151/jmsj1965.65.6_949, 1987. a
Yang, P., Feng, Q., Hong, G., Kattawar, G. W., Wiscombe, W. J., Mishchenko, M. I., Dubovik, O.,
Laszlo, I., and Sokolik, I. N.: Modeling of the scattering and radiative properties of nonspherical
dust-like aerosols, J. Aerosol Sci., 38, 995–1014,
https://doi.org/10.1016/j.jaerosci.2007.07.001, 2007. a
Yu, T., Rose, W. I., and Prata, A. J.: Atmospheric correction for
satellite-based volcanic ash mapping and retrievals using “split window”
IR data from GOES and AVHRR, J. Geophys. Res., 107, D16,
https://doi.org/10.1029/2001JD000706, 2002. a
Zidikheri, M. J. and Lucas, C.: A Computationally Efficient Ensemble
Filtering Scheme for Quantitative Volcanic Ash Forecasts, J. Geophys. Res.-Atmos., 126, e2020JD033094, https://doi.org/10.1029/2020JD033094, 2021. a
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Satellite observations are often used to track ash clouds and estimate their height, particle...